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for Neuroinspired Computing
A large effort is devoted to the research of new computing paradigms associ-
ated with innovative nanotechnologies that should complement and/or 
propose alternative solutions to the classical Von Neumann/CMOS (com-
plementary metal oxide semiconductor) association. Among various propo-
sitions, spiking neural network (SNN) seems a valid candidate. i) In terms 
of functions, SNN using relative spike timing for information coding are 
deemed to be the most effective at taking inspiration from the brain to allow 
fast and efficient processing of information for complex tasks in recogni-
tion or classification. ii) In terms of technology, SNN may be able to benefit 
the most from nanodevices because SNN architectures are intrinsically 
tolerant to defective devices and performance variability. Here, spike-timing-
dependent plasticity (STDP), a basic and primordial learning function in the 
brain, is demonstrated with a new class of synapstor (synapse-transistor), 
called nanoparticle organic memory field-effect transistor (NOMFET). This 
learning function is obtained with a simple hybrid material made of the self-
assembly of gold nanoparticles and organic semiconductor thin films. Beyond 
mimicking biological synapses, it is also demonstrated how the shape of the 
applied spikes can tailor the STDP learning function. Moreover, the experi-
ments and modeling show that this synapstor is a memristive device. Finally, 
these synapstors are successfully coupled with a CMOS platform emulating 
the pre- and postsynaptic neurons, and a behavioral macromodel is devel-
oped on usual device simulator.
1. Introduction

Spike-timing dependent plasticity (STDP) is widely believed 
today to be one of the fundamental mechanisms of the unsu-
pervised learning in biological neural networks. STDP in 
biological systems is a refinement of Hebb’s learning rule.[1] 
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Grant et al,[2] Markram et al,[3] Bi, and 
Poo[4] observed STDP in biological syn-
apses. The principle of STDP is to tune 
the response of a synapse as a function 
of the pre- and post- synaptic neurons 
spiking activity - Figure 1a. Depending 
on the correlation or anti-correlation of 
the spiking events of the pre- and post-
synaptic neurons, the synapse’s weight 
is reinforced or depressed, respectively. 
The so-called “STDP function” or “STDP 
learning window” is defined as the rela-
tionship between the change in the syn-
aptic weight or synaptic response versus 
the relative timing between the pre- and 
postsynaptic spikes (Figure 1b).[5] The 
implementation of STDP with nanode-
vices is strongly driven by a bio-inspired 
approach to enable local and unsuper-
vised learning capability in large artificial 
SNN in an efficient and robust way. To 
this end, it is envisioned to use the nan-
odevices as synapses and to realize the 
neuron functionality with complementary 
metal oxide semiconductor (CMOS) tech-
nology. This approach is supported by the 
fact that the limiting integration factor 
is really the synapse density, as realistic 
applications could require as much as 103 
to 104 synapses per neuron. Snider[6] proposed an implementa-
tion of STDP with nanodevices, where the synapses are real-
ized with a crossbar of memristors[7] and the neurons with a 
“time-multiplexing CMOS” circuit. Using these two elements, 
it should be possible to reproduce exactly the “STDP learning 
window” of a biological synapse (Figure 1b). Linares-Barranco 
et al. simulated the implementation of the STDP function 
with memristive nanodevices.[8,9] Using a specific shape of the 
spikes and the nonlinearity of the memristor, they showed that 
the conductivity of the memristor can be tuned depending on 
the precise timing between the postsynaptic and presynaptic 
spikes. More interestingly, they showed that the shape of the 
STDP learning window can be tuned by changing the shape of 
the spike (Figure 1c). We have to emphasize that our aim is to 
be inspired by the behavior of a biological synapse for neural 
computation applications (and not to build a model system of 
the synapse), thus the important point is to reproduce qualita-
tively the STDP behavior, even if the spike signals applied to 
the synapstor are not close to the real biological spike.
609wileyonlinelibrary.com
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Figure 1. a) Illustration of a synapse connecting two neurons: the presynaptic and the postsynaptic neurons. Reproduced with permission.[9] b) STDP 
function, i.e., change in the synaptic weight versus spike timing interval, measured on a biological synapse. Reproduced with permission;[9] data from 
Bi and Poo.[4] c) Two shapes of spikes (left side) and the corresponding STDP functions (right side) calculated for a memristive device. Reproduced 
with permission.[9]
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We recently demonstrated that the nanoparticle–organic 
memory field-effect transistor (NOMFET) is able to mimic the 
short-term plasticity (STP) behavior of a spiking biological syn-
apse.[10] When a sequence of voltage pulses is applied across 
610 wileyonlinelibrary.com © 2012 WILEY-VCH Verlag 
the device, the current transmitted by the NOMFET is modu-
lated depending on the frequency of the pulses and the past 
input activity of the device,[10,11] mimicking the facilitating or 
depressing behavior of a biological spiking synapse.[12] Research 
GmbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2012, 22, 609–616
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on artificial synapse devices mimicking the plasticity of a bio-
logical synapse is a burgeoning field. Recently, Jo et al.[13] have 
observed STDP in Ag/Si-based memristor, Lai et al.[14] in  
polymer/Si nanowire transistor, Seo et al.[15] in oxide resistive 
memory, Kuzum et al. in phase-change memory.[16] Here, we 
demonstrate the STDP behavior of the NOMFET. First, we care-
fully analyze the behavior of this synapstor and show that it can 
be modelized by the memristor equations.[17,18] Thus, we follow 
the Linares-Barraco et al. suggestions[8,9] to successfully imple-
ment the STDP behavior with the NOMFET. Beyond the dem-
onstration at a single device level, we also demonstrate that the 
NOMFET can be efficiently coupled with a CMOS platform emu-
lating the pre- and postsynaptic neurons. Finally, we developed 
a behavioral macromodel suitable for device/circuit simulations 
using commercially available simulators (Spectre-Cadence).[19]

2. The Nanoparticle–Organic Memory Field-Effect 
Transistor: A Memristive Device

The NOMFET is based on a standard bottom gate/bottom 
source-drain organic transistor with gold nanoparticles (NPs) 
fixed at the gate dielectric/organic semiconductor (OSC) inter-
face by surface chemistry (see the Experimental Section, and a 
previously reported detailed material characterization[10]). The 
STP behavior of the NOMFET is due to the internal charge/
discharge dynamics of the NP/OSC system with typical time 
constants that can be adjusted between 1 to 102 s.[10] While we 
have demonstrated some simple neuroinspired plasticity for 
NOMFETs with a channel length L down to 200 nm, and NP 
© 2012 WILEY-VCH Verlag GAdv. Funct. Mater. 2012, 22, 609–616

Figure 2. a) Schematic representation of the NOMFET and pseudo two-t
used to characterized the NOMFET as a memristive device. The current is
effect of the pulse voltage VP on the NPs charge. c) Relative variation of t
measurements and squares from the physical model (see the Supporting 
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diameter of 5 nm, working at a nominal bias of –3 V,[10] here 
for the sake of demonstration, all the experiments are reported 
for L = 5 μm NOMFETs and 20 nm diameter NPs working 
at a nominal voltage of –30 V, because these devices previ-
ously showed the largest plasticity amplitude (i.e., the largest 
modulation of the NOMFET output current, here analogous 
to the synaptic weight, by the applied spike sequence).[10] The 
channel width (W) is 1000 μm for the 5 μm length NOMFET, 
to maximize the output current, given the relative low mobility 
of the device (ca. 10−3 cm2 V−1 s−1).[10] Optimization of the OSC 
properties (not done here) will allow reaching a state-to-the art 
mobility of about 1 cm2 V−1 s−1, and will allow reducing the 
actual width by a factor 103. Further optimization would be 
the use of high-k dielectric to reach the same output current 
while downscaling W accordingly. Downscaling the NOMFET 
channel length to 30 nm (with 5 nm diameter NPs) is pos-
sible (we have already demonstrated a 30 nm channel length 
OFET[20]), but such a task would require a hard work for tech-
nological optimization, out of the scope of this proof of prin-
ciple demonstration.

The NOMFET is used as a pseudo two-terminal device 
(Figure 2a): the drain (D) and gate (G) electrodes are connected 
together and used as the input terminal of the device, and the 
source (S) is used as the output terminal (virtually grounded 
through the ampmeter). To establish that it works as a memris-
tive device, we write the output current - input voltage relation in 
the NOMFET according to the formalism proposed by Chua,[17] 
and we discuss the significance of the terms in this equation:

IDS(t) = G(QNP(t), VDS(t), t)VDS(t)  (1)
611wileyonlinelibrary.commbH & Co. KGaA, Weinheim
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.
QNP(t) = g (QNP(t), VDS(t), t) (2)

where G is the conductance of the device that includes the 
field effect, VDS(t) is the applied signal of time varying shape, 
and QNP(t) the charges trapped in the NPs. For the NOMFET, 
QNP(t) is the relevant internal parameter, and its first-order time 
derivative is given by the g function, which is the “memristive” 
function that describes how this internal parameter is updated 
as function of the internal state, the external voltage and time. 
A non-linear behavior of g is very interesting to implement 
synaptic plasticity and STDP.[6,8,9,18] A g function with a null 
value between negative and positive threshold voltages and 
increasing/decreasing parts above/below (respectively) these 
thresholds has been used to simulate STDP and learning capa-
bilities in memristor-based neuroinspired circuits.[8,9]

To characterize the memristive behavior of the NOMFET, 
we measure the change of its internal parameter δQNP when 
voltage signal VDS(t) is a pulse of amplitude VP and duration 
10 s. This value of 10 s has been fixed in order to maximize 
the effect of the NP charge. This time is longer than the typ-
ical charging/discharging time constants (about 2–3 s)[10] for a 
NOMFET with a channel length of 5 μm and 20 nm NPs used 
for these experiments. Reducing the width of the charging pulse 
will give smaller variations of the current, but does not change 
the conclusions. The output current, before (Iinitial) and after 
(Iafter) the application of the charging pulse, are measured with 
a short read pulse (100 ms). This pulse is short enough to not 
modify the charge state of the NPs. Plotting (Iafter–Iinitial)/Iinitial,  
which is proportional to δQNP = Qafter

NP − Qinitial
NP  (Eq. S24, 

Supporting Information), versus VP gives a representation 
of the g-function of the NOMFET. As the current at a given 
time t depends on the history of the device, we have devel-
oped a specific reset protocol (see Experimental Section, and 
Figure S1, Supporting Information) that sets the charge state 
of the NPs to the same Qinitial

NP  before each measurement at  
different VP. Figure 2c shows the measured relative varia-
tion of the current (dots) as a function of VP, i.e., the internal 
memristive-like function of the NOMFET. This function dis-
plays the three expected regions similarly to the resistance 
change in a voltage-controlled memristance:[8,9,17,18] i) For the 
negative voltage, the NPs are charged with holes, the Cou-
lomb repulsion between the positively charged NPs and the 
OSC reduces the hole density in the conducting channel, the 
conductivity of the NOMFET is decreased. ii) For intermediate 
voltages (Vth1 < V < Vth2), the effect of the input voltage on 
the charge state of the NPs is null. The charge state of the 
NPs cannot be changed. The physical meanings of the two 
threshold voltages, Vth1 ≈ 0 V and Vth2 ≈ 15 V, are discussed 
in the Supporting Information. iii) For large positive voltages, 
holes can be detrapped from the NPs, leading to a reverse 
effect, i.e., an increase in the conductivity of the NOMFET. 
The memristive g function shown in Figure 2c can be calcu-
lated using Equation S31 (Supporting Information) consid-
ering the three parts of the experimental curve. For simplicity, 
we assume the same time constants in Equation S31 (τ =  
τ0 = τ+ = τ− = 5 s). This value is in good agreement with experi-
mental values for the NOMFET.[10,11] The squares in Figure 2c  
are the fit of this model. Equation S31 gives two linear rela-
tionships for the two branches that fit relatively well our data.
wileyonlinelibrary.com © 2012 WILEY-VCH Verlag 
3. Spike-Timing Dependent Plasticity Behavior  
of the Nanoparticle–Organic Memory  
Field-Effect Transistor

In a previous report,[10] the STP (short-term plasticity) is 
obtained by virtue of the unbalanced charging (during the 
application of a pulse at the input terminal) and discharging 
(between two successive pulses at the input terminal) behav-
iors of the NPs, respectively. Here, as detailed below, we play 
with the same charging/discharging dynamics to modulate 
(i.e., increase or decrease) the amount of charges trapped in the 
NPs when two pulses are now applied, one at the input and 
one at the output terminals of the NOMFET separated by a 
given time interval, leading to the long-term depression (LTD) 
or long-term potentiation (LTP) behavior of STDP, respec-
tively. More precisely, Figure 3a shows the two different shapes 
of the spikes that are applied to the NOMFET, in agreement 
with the spike shape suggested previously[8] (Figure 1c). These 
spikes are designed so that – when applied alone – they do not 
induce any significant variation of conductivity. It means that 
NPs charging and discharging are well balanced between the 
negative and positive parts of the spike, respectively. The inte-
gral of the negative part of the signal (V < Vth1 ≈ 0 V) is equal 
to the integral of the positive part V > Vth2 ≈ 15 V), Figure 3a. 
To facilitate the measurement with the probe-station, the post-
synaptic spike (that must be applied to the VS terminal of the 
device) is inverted and applied to the VD presynaptic terminal. 
Thus, the effective signal (Figure 3b) applied to the VD terminal 
becomes equivalent to the application of the presynapse spike 
at the VD terminal and the postsynapse spike at the VS terminal 
(as a feedback). We check in section 4 that this procedure gives 
the same results as if we had applied the pre- and postsynaptic 
pulses directly to each of the two terminals. Note that the post-
synaptic shape (Figure 3b) is slightly different from the presyn-
aptic one to take into account the asymmetry of the memristive 
g function of the NOMFET (Figure 2c).

In a first stage, the presynapse spike is applied alone at the 
input terminal of the NOMFET. This step is crucial to verify that 
the presynapse spike alone does not change the conductivity of 
the NOMFET. In a second stage, we apply the pre- and postsyn-
aptic spikes with a fixed time shift Δt between them (Figure 3b). 
The spikes have a frequency of 0.1 Hz and the conductivity 
of the NOMFET is read with a short pulse (100ms) synchro-
nized with the spike sequence and applied 1s after the end of 
the pre-/postsynapse spike sequence (Figure 3b). The superpo-
sition of the pre- and postsynaptic spikes leads to an effective 
voltage across the NOMFET (bottom Figure 3b) in which the 
positive and negative contributions are no longer equal. This 
unbalanced contribution allows reproducing the basic prin-
ciple of the STDP (Figure 3c). i) When the presynaptic neuron 
fires alone, the weight of the synapse is not changed. In the 
first part of Figure 3c (labeled “No postspike”), 10 presynaptic 
spikes are applied alone to the NOMFET. The conductivity of 
the NOMFET remains in its initial state. ii) When a presynaptic 
spike is correlated with a postsynaptic spike, the conductivity of 
the NOMFET is increased (Figure 3c labeled “With postspike”, 
Δt = + 2 s, 13 correlated spikes) due to the more important 
contribution of the positive part of the effective voltage across 
the NOMFET (i.e., the NPs are progressively discharged). The 
GmbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2012, 22, 609–616
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Figure 3. a) The two different pulses used to reproduce the STDP: square signal (solid lines), triangular signal (dash-dot line). In the case of the 
presynaptic pulse, the effect of the negative part, V− = –15 V for 2 s, on the conductivity is equal to the effect of the positive part of the pulse, V+ = 
30 V for 2 s. b) Pre- and postsynaptic pulses superposition: the effective potential across the device is VPRE- VPOST (in this case, Δt is 3 s). Note that 
the postsynaptic pulse is V− = –30 V and V+ = 15V to take into account the asymmetry of the memristive g function of the NOMFET. In this situation, 
the effect of the postsynaptic pulse alone on the conductivity is null. c) Typical STDP measurement. First, 10 presynaptic pulses are applied alone at 
0,1 Hz in order to verify that the conductivity is not changed by the presynaptic signal alone. Next, 13 pre- and postsynaptic pulses are applied with 
3 different Δt values.
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synaptic weight is reinforced. iii) When the post- and presyn-
aptic neuron spikes are anti-correlated (Δt = –2 s), the conduc-
tivity decreases, the contribution of the negative potential part 
dominates and the NPs are gradually more charged. The weight 
of the synapstor is depressed.

The same data are plotted as ΔI/I versus Δt curves (STDP 
learning curve) in Figures 4a and b for a sequence of 12 succes-
sive triangular and square spikes, respectively. Figure 4a (trian-
gular spike) qualitatively looks like the one reported by Bi and 
Poo[4] for a biological synapse, by other groups with inorganic 
devices[13–16] and Linares-Barranco et al.[8,9] for simulations on 
memristors, i.e., a more or less sharp STDP function as shown 
in Figure 1c (right upper corner). Results in Figure 4b obtained 
with a rectangular spike show that the shape of the STDP 
© 2012 WILEY-VCH Verlag GmAdv. Funct. Mater. 2012, 22, 609–616
learning window can be modulated successfully by changing 
the shape of the pulses, in good agreement with the behavior 
predicted by Linares-Barranco for a memristive device[8,9] 
(Figure 1c). Recent results on synapses based on phase change 
memory also showed experimentally that it is possible to 
change the shape of the STDP curves, albeit with a much more 
complicated sequence of spikes in this case.[16] Now, we obtain 
a more “squared” or “rounded” shape for the NOMFET STDP 
function, comparable with the simulation (right-lower corner 
in Figure 1c). Our model reproduces the experiments with 
a good qualitative agreement (squares Figure 4) considering 
five different values for the charge/discharge time constants 
depending on the voltage (Equation S32 and S34, Supporting 
Information). These time constants τi (–2 < i < +2, Equation S34)  
613wileyonlinelibrary.combH & Co. KGaA, Weinheim
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Figure 4. The relative variation of current is measured after 12 repetitions of the pre and post pulses pattern with a given Δt (as described in Figure 3b).  
The dots correspond to the experimental measurement (Iafter – Iinitial)/Iinitial and the squares are the model calculation – γδQNP (see the Supporting 
Information). a) STDP function obtained with the triangle-shape pulses. b) STDP function obtained with the square-shape pulses. c) STDP learning 
function acquired with the electronic-board for two NOMFETs (dots and squares) measured simultaneously.
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are in the range 0.3 to 5 s, in good agreement with previous 
measurements showing that the charging/discharging of the 
NPs follows a multi-time constant dynamics in this time-scale 
range (Figure S5 in the Supporting Information in Ref. [10]). 
Finally, we can note that the approximation used in Eq. S24 
(γδQNP << 1) is justified (see Figure 2c) at low bias and is rea-
sonable for bias voltages in the range ± 30V used in the STDP 
experiments. Nevertheless, the model-experiment agreement 
seems not strongly affected when γδQNP approaches 1 at higher 
voltages. Finally, we note that the STDP amplitude (from –15% 
to 30%, Figure 4) is lower than for biological synapse (–40 to 
100%) as reported by Bi and Poo,[4] however, our results are 
larger or similar to the ones reported by other groups.[13–16] We 
expect that these performances can be improved by a careful 
technology optimization, for instance, recent STDP results with 
phase change memory (PCM)[16] – a much more mature tech-
nology – reached a dynamic between –40 and 110%.

4. Hybrid Nanoparticle–Organic Memory  
Field-Effect Transistor/Complementary Metal 
Oxide Semiconductor System

Instead of using a single device connected to a probe-station, 
a more realistic demonstration of the STDP behavior of the 
wileyonlinelibrary.com © 2012 WILEY-VCH Verlag G
NOMFET is obtained by interfacing these synapstors with a 
CMOS-based electronic board to emulate the neurons and 
generate pre- and postsynaptic spikes, which are now directly 
applied to the input and output of several NOMFETs. Several 
NOMFETs were mounted in a TO case and plugged on the 
electronic board (see Figure S2, Supporting Information). This 
board is driven by an FPGA and is remotely controlled by a PC 
(see details in the Supporting Information). Series of rectangular 
spikes, identical to those used for the previous measurements, 
are applied simultaneously to two NOMFETs, with a randomly 
generated time interval Δt between the pre- and postsynaptic 
spikes. The output currents of these NOMFETs are acquired 
with the electronic-board (see Figure S2, Supporting Informa-
tion). The ΔI/I versus Δt measured simultaneously for two 
NOMFETs are shown in Figure 4c. The STDP function obtained 
with this NOMFET/CMOS system is in good agreement with 
the one measured point-by-point for a NOMFET connected 
with the probe-station as shown in Figure 4b. In addition this 
is, to the authors’ best knowledge, the first actual implemen-
tation of STDP on a dynamic device that meets the following 
conditions: i) The correct behavior is achieved regardless of the 
initial state of the device, as the timing between the pre- and 
postsynaptic spikes is random between each measurement (the 
same STDP behavior, Figure 4c, has been obtained here with 
random Δt, while the data shown in Figures 4a and 4b have 
mbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2012, 22, 609–616
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Figure 5. a) The NOMFET is a p-type FET, it is used in a diode-like con-
nected configuration. Source S is the top terminal, drain D is the bottom 
terminal. IDS is either zero or positive. It is equivalent to a diode. When used 
as an STDP synapse (see Figure 2a), bottom terminal is the presynaptic 
connection and top terminal is the postsynaptic connection. b) NOMFET 
macromodel implemented in Spectre-Cadence.[19] c) Simulation of the 
NOMFET with the macromodel: output current (solid line, left scale) and 
evolution of the internal weight parameter w (dashed line, right scale). 
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been recorded for a linear sequence of Δt from –5 to +5 s). ii) 
The behavior remains consistent and very well reproducible 
regardless of the characteristics of the devices. Indeed, there is a 
factor 10 in the mean conductivity ratio between the two NOM-
FETs used in Figure 4c and yet the relative change in conduc-
tivity is the same for the two devices, i.e., the variability on the 
dynamical behavior of the NOMEFT is very low. This behavior 
is due to the fact that the STDP is based on a temporal coding, 
and only the relative variation of the NOMFET conductivity 
obtained through the applied pulses, and the natural relaxation 
of the NPs, impose the dynamics. This means that with STDP, 
we have a reliable way of programming conductivity changes 
using temporal information coding with seemingly unreliable 
devices. As a consequence, STDP and NOMFET can be useful 
to implement some learning algorithms in neural network cir-
cuits without to pay too much attention to some common varia-
bility sources, such as physical dimensions, reproducibility and 
control of the technological steps.

5. Behavioral Macromodel for Neuroinspired  
Circuit Simulation

The physical model developed for such a diode-connected 
NOMFET (Figure 5a) is implemented in Spectre-Cadence[19] for 
simulating neuroinspired circuits using STDP and NOMFET. 
The NOMFET device can be described behaviorally using the 
macro model circuit shown in Figure 5b. The terminal drain 
and source voltage VD and VS are copied to an internal diode in 
series with a resistor, attenuated by a scaling factor α. This is to 
adapt the operating voltage (few tens of volts) of the NOMFET 
to a regular silicon diode used in CADENCE. The current 
through the diode ids0 is sensed and copied to the bottom input 
of element m(). Element m() computes the following function:

m(ids0, w) = Aids0e−w/w0
 (3)

where w is a circuit variable (a voltage) that describes the evo-
lution of the charge in the NPs, w(t) is proportional to δQNP(t) 
(Equation S36 in the Supporting Information). Internal voltage 
w is generated by feeding a resistor R and a capacitor C with 
a current source of value –Cρ(VDS). The time constant in eqs. 
(S35–S39) is such that τ = RC. This way this circuit imple-
ments Equation S38. This macromodel is used to simulate the 
behavior of the NOMFET when stimulated by a signal such as 
the one shown in Figure 2b, a pulse VP = –35 V during 10s. By 
holding VS = 0 and applying a negative –35 V pulse during 10 s 
at VD, we obtain the signal evolutions shown in Figure 5c. The 
different parameters were optimized to best fit the measured 
IDS signal in Figure 2b: τ = 2.2 s (C = 1 F, R = 2.2 Ω), A = 10−6, 
Rd the diode resistance = 20 kΩ, Vth = 15V, w0 = 0.16V and α = 
0.1. The internal diode is described by ids0 = Id0eVdiode/UT  where 
UT = kT/q is the thermal voltage (≈ 26mV) and Id0 = 8 × 10−20 A. 
Simulated results in Figure 5c are in very good agreement with 
the experiments (Figure 2b). Again, note that the fitted time 
constant is in good agreement with experimental values for the 
NOMFET as reported elsewhere.[10] These results validate the 
macromodel that can be further used to simulate neuroinspired 
circuits using STDP learning rules.
© 2012 WILEY-VCH Verlag GmAdv. Funct. Mater. 2012, 22, 609–616
6. Discussion and Conclusion

Finally, we can notice that the potentiation (depression) reported 
here for the correlated (anticorrelated) spikes resembles that 
of a biological synapse (albeit with spike signals adapted to 
the NOMFET for which the physical mechanisms responsible 
for the STDP behavior are clearly different from the ones in a 
biological synapse) as reported by Markram et al.[3] and by Bi 
and Poo,[4] while at different time scales due to the different 
internal dynamics of the two systems. We have already dem-
onstrated that NOMFET with a smallest channel length (L =  
200 nm, and 5 nm NPs), working at a lower voltage (–3 V) 
exhibit neuroinspired short-term plasticity (STP) with smaller 
time constants (∼1 s, see Figure 6c in Ref. [10]), while with a 
615wileyonlinelibrary.combH & Co. KGaA, Weinheim
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weaker amplitude.[10] So we believe there is room to improve 
the neuroinspired behavior of these synapstors and their future 
use in neuroinspired computing circuits and architectures. For 
instance, the actual low time scale response of NOMFET can 
be ascribed to two features. i) The fist one is the low charge/
discharge time constants of the NPs, which are capped by alkyl 
chains (see the Experimental Section) acting as tunnel barrier. 
ii) The relatively low mobility of charges in the pentacene/NP 
channel,[10] which reduces the functioning speed of the device. 
Improvements (i.e., shorter time-scale, closer to the one of 
a biological synapse) can probably be attainable by changing 
the nature of the NP capping molecules (e.g., using more 
conducting π-conjugated molecules), and/or optimizing the 
deposition/nature of the organic semiconductor to increase the 
charge-carrier mobility.

7. Experimental Section
Device Fabrication: The synapstors are made on a highly doped 

(∼10−3 Ω.cm) p-type silicon covered with a thermally grown 200 nm thick 
silicon dioxide. After a usual wafer cleaning (sonication in chloroform for 
5 min, piranha solution (H2SO4/H2O2, 2/1 v/v) for 15 min – caution: the 
preparation of the piranha solution is highly exothermic and reacts violently 
with organics, ultraviolet ozone cleaning (ozonolysis) for 30 min), we 
evaporated titanium/gold (20/200 nm) electrodes, patterned by optical 
lithography and lift-off. To attach the NPs, the gold (Au) electrodes were 
functionalized with a 2-amino ethanethiol molecules (10 mg mL−1 in 
ethanol) during 5 h. After rinse (isopropanol) and subsequent drying 
in argon stream, the SiO2 surface was functionalized at 60 °C during 
4 min by 3-aminopropyl trimethoxysilane (APTMS) molecules (from 
ABCR) at 1.25 μL mL−1 (in anhydrous toluene).[21] The reaction took 
place in a glove-box (MBRAUN) filled with nitrogen (less than 1 ppm of 
oxygen and water vapor). We removed non-reacted molecules by rinse in 
toluene, and then in isopropanol under sonication, and the samples were 
dried under argon stream. This sample was then dipped in an aqueous 
solution of citrate-stabilized Au-NP (colloidal solution purchased 
from Sigma–Aldrich, 20 ± 3 nm in diameter) overnight under argon 
atmosphere, followed by cleaning with deionized water and isopropanol, 
and drying under argon stream. NP concentration in the solution and 
duration of the reaction are selected from our previous work to have a 
NP density on the surface of about 1011 NP cm−2 that gives the best 
results for the synaptic behavior of the NOMFET.[10] Then, the Au-NPs 
were encapsulated by dipping in a solution of 1,8-octanedithiol (from 
Aldrich) in ethanol (10 μL mL−1) during 5h. The sample was finally 
rinsed in alcohol and dried in argon stream. The device is completed by 
evaporating (substrate kept at room temperature during the evaporation) 
35 to 50 nm thick of pentacene at a rate of 0.1 Å s−1 More details on the 
structural characterizations of the NPs networks and pentacene films 
(SEM, AFM,…) have been provided previously.[10]

Electrical Measurements: The NOMFET were contacted with a 
micromanipulator probe station (Suss Microtec PM-5) inside a glove box 
(MBRAUN) with controlled nitrogen ambient (less than 1 ppm of water 
vapor and oxygen). Such a dry and clean atmosphere is required to avoid 
any degradation of the organics. The input spikes were delivered by an 
arbitrary waveform generator (Tabor Electronics 5062) remote controlled 
by a PC. The pulse and spike sequences were designed with Matlab. The 
output currents were measured with an Agilent 4155C semiconductor 
parameter analyzer.

Reset Potocol: The reset signal is based on the same principle than 
the one used to remove the permanent magnetization of a magnet. We 
impose a decreasing sinusoidal input voltage (see Figure S1, Supporting 
Information) with a large period and a large initial voltage (the period and 
initial voltage must be large enough in comparison to the input voltage 
used during the operation/characterization of the device). The NPs are 
wileyonlinelibrary.com © 2012 WILEY-VCH Verlag
alternatively charged and discharged with a decreasing magnitude. Even 
if this initial state of charge of the NPs is different from the virgin state 
of charge of the NPs (i.e.,in the as-deposited state), it allows starting a 
specific measurement from the same initial condition.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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