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Theoretische Chemie, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany, and National Institute for Laser, Plasma and Radiation
Physics (NILPRP), Institute for Space Science (ISS), Bucharest-Mağurele RO-077125, Romania
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ABSTRACT: The first simultaneous measurements of transition
voltage (Vt) spectroscopy (TVS) and conductance (G) histograms
(Guo et al., J. Am. Chem. Soc. 2011, 133, 19189) form a great case
for studying stochastic effects, which are ubiquitous in molecular
junctions. Here an interpretation of those data is proposed that
emphasizes the different physical content of Vt and G and reveals
that fluctuations in the molecular orbital alignment have a
significantly larger impact on G than initially claimed. The present
study demonstrates the usefulness of corroborating statistical
information on different transport properties and gives support to TVS as a valuable investigative tool.

■ INTRODUCTION
Whatever the fabrication method,1 the formation of a single-
molecule junction is a statistical event subject to stochastic
fluctuations. Statistical data analysis is a basic step for extracting
confident results and is unavoidable in understanding molecular
transport theoretically and in designing molecular devices with
desired functions. A prerequisite for this is the ability to
conduct a large number (∼thousands) of transport experiments
in a short time. Recent experimental achievements in
chemically preparing and manipulating break junctions
represent a significant advance in this direction.2−4 Until
recently, the statistical analysis of molecular transport data
comprised measurements at fixed low biases. The resulting
conductance (G) histograms revealed well-known broad
peaks5−9 characterized by a full width at half-maximum
(fwhm), ΔG, that is typically larger than the most probable
value (ΔG > Gm.p.).

3,4,6 The quantitative understanding of the
rather broad maxima was confronted with numerous difficulties
from both the experimental and theoretical sides, such as
impossibility of microscopically characterizing the molecule−
electrode contacts (say, hybridization parameters Γs,t) and the
relative alignment ε0 = EMO − EF between the (frontier)
molecular orbitals (MOs) and the electrode Fermi levels.
The parameter ε0 plays a key role because it controls the

charge transport efficiency. To determine ε0, transition voltage
(Vt) spectroscopy (TVS) was recently proposed.10 Because of
its simplicity, it has become a very popular tool in experimental
molecular electronics.2−4,10−15 Theoretical aspects of TVS have
also been discussed.16−21

Experimental data reveal significant differences between the
G and Vt histograms. Transition voltage histograms reported in
recent works2−4 are significantly narrower. They are charac-
terized by standard deviations amounting to δvt = δVt/Vt

m.p. ∼
10−20% of the most probable values Vt

m.p..2−4,10,11

A meaningful analysis of the role played by fluctuations
should obviously rely upon G and Vt histograms obtained by
simultaneous measurements on the same molecular devices.
Such data have been reported in an important recent work.4

The question of the physical origin of the fluctuations
responsible for the different widths of the G and Vt histograms
has already been addressed in ref 4. From results of Wentzel−
Kramers−Brillouin (WKB) calculations based on the Simmons
model22 and the “barrier shape” conjecture (i.e., that eVt ≈
|ε0|

10,12,20), it has been argued that essentially the fluctuations in
G are determined by the contacts’ resistance and that variations
in the energy offset ε0 play a very reduced role. However, it has
been shown that with Simmons-type calculations it is
impossible to reproduce quantitatively the I−V curves of
molecular junctions based on octanedithiol (ODT) in the
higher-voltage range of interest (V ∼ Vt),

18 and ODT is one of
the molecular species employed in ref 4. From a more general
perspective, it is worth noting an important shortcoming of the
Simmons model: it does not account for the lateral constriction
of electron motion and therefore is inappropriate for describing
nanoelectronic devices with sharp electrodes.23

This indicates that fluctuations in G and Vt are not properly
understood at present. Unraveling their physical origin is of
general interest for molecular electronics, and this is the main
specif ic aim of the present paper. The main general aim of this
study is to emphasize the usefulness of corroborating statistical
information on different transport properties.

■ COMPUTATIONAL SECTION
For illustration, I will restrict myself here to the high-conductance (H-
type) ODT-based junctions of ref 4. The model employed below is the
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Newns−Anderson model, which was extensively employed in
chemisorption and electrochemistry24−26 as well as in recent
theoretical studies of TVS.20,21 The molecular junction is modeled
as a single energy level interacting with two electrodes [say, substrate
(s) and tip (t)]. Since ODT junctions exhibit p-type conduction,12 it is
the HOMO (ε0 ≡ −εh = EHOMO − EF < 0) that is responsible for
electric transport. Within the wide-band limit, the width functions Γs,t
are energy-independent, and the current I and the conductance per
molecule G can be expressed in simple analytical forms:18,20,26−28
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In the above, G0 = 2e2/h, τs,t are the molecule−electrode resonance
integrals, s,t are the electrodes’ density of states at the Fermi level,
and Λ± ≡ εh ± eV/2.
Equation 1 assumes a potential V that symmetrically drops at the

contacts and is flat across the molecule (as suggested by ab initio
calculations for ODT29 at biases V < 2 V).18,30 The approximate forms
of eq 3 above and eq 4 below hold to order (Γa/εh)

2 and are very
accurate in realistic cases (see below). By using eq 1 and imposing the
condition ∂[log I(V)/V2]/∂(1/V) = 0 (which defines the Fowler−
Nordheim minimum10), one obtains two transition voltages Vt± for
positive and negative bias polarities of equal magnitude: Vt± = ±Vt.

18,20

Straightforward calculations21 yield the following analytical expressions
valid to order (Γa/εh)
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For ODT (Gm.p./G0 < 2.8 × 10−4),4 eq 3 yields Γ/εh < 0.01, which
shows that the estimate obtained by setting Γa = 0 in eq 4 is
excellent.18

Validating a Newns−Anderson-type model for molecular junctions
was a topic discussed in some detail in recent works.18,20,21 To
illustrate the fact that this model is also appropriate for the ODT-based
junctions fabricated in ref 4, the theoretical I−V curve obtained from
eq 1 is presented in Figure 1 along with the raw data for an individual
trace measured in ref 4. It is worth emphasizing that, as done in other
cases,20,21 Figure 1 does not simply represent the result of a best fit by
constraining the theoretical curve to pass through all the experimental

points. The parameters εh and Γ31 needed in eq 1 were been
determined by employing only two values deduced from the
experimental curve: the transition voltage Vt (the average of the two
almost-identical values for positive and negative bias polarities4) and
the low-bias conductance G. Along with the figures and the discussion
presented in the Supporting Information, Figure 1 demonstrates that
the Newns−Anderson model excellently describes the I−V measure-
ments on the alkanedithiol-based molecular junctions of ref 4.

■ RESULTS AND DISCUSSION
Within the above framework, statistical fluctuations may affect
the parameters εh and Γ. Therefore, the theoretical analysis
should be based on the statistical p(εh) and q(Γ) distributions
of εh and Γ. To couch the discussion in terms as general as
possible, no attempt will be made below to identify and
characterize in detail sources of microscopic fluctuations for the
parameters Γ and εh. Inhomogeneous broadening (to be
associated here with fluctuations in Γ) is often related to the
inability to fabricate perfectly identical single-molecule
junctions. Possible sources of fluctuations in εh are the softness
and distortion of the molecular configuration and the short-
range Coulomb interactions at molecule−electrode contacts.
The latter aspect has been analyzed in a complementary
study.21

Experimentally accessible are the conductance and transition
voltage histograms w(g) and v(Vt), respectively. These
distributions are interrelated. F(Vt,g), the distribution function
of Vt and g, can be obtained from eqs 3 and 4 as
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Because the experimental Vt distribution is Gaussian,
4 eqs 4 and

6 yield a normal distribution of the HOMO energy offsets
whose relative standard deviation δεh is equal to that of Vt (i.e.,
δεh = δvt = δVt/Vt

m.p.):
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By fitting the experimental Vt histogram (Figure 5d of ref 4), I
obtained a standard deviation δεh = δvt = 23%. The dashed
(blue) curve depicted in Figure 2 corresponds to the g
distribution
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which was deduced by imposing in eq 7 the condition q(Γ) =
δ(Γ − Γ0) (i.e., frozen Γ fluctuations; here δ stands for the
Dirac “δ function”). The fixed value Γ0 = εh

m.p.(gm.p.)1/2 was
adjusted to fit the experimental G maximum. As is visible in
Figure 2, fluctuations in εh (or, equivalently, Vt) contribute
significantly to the width of the G histogram. A standard
deviation δvt amounts to a fwhm of 2.355δvt for a normal
distribution, and because of the second power of εh in eq 3, one

Figure 1. Comparison between an individual experimental curve from
ref 4(courtesy of the authors of ref 4) and the theoretical I−V curve
obtained via eq 1. Model parameter values determined as described in
the main text are given in the inset.
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gets for the distribution w(g)|δΓ=0 a fwhm with δg|δΓ=0 = Δg/
gm.p.|δΓ=0 ∼ 4.7δvt. For the above value of δvt = 23%, this
amounts to δg|δΓ=0 ≈ 1.08, which is not much smaller than the
experimental value, δgexp ≈ 1.32.
It is noteworthy that the above conclusion on the important

impact of the εh fluctuations deduced within the presently
adopted framework (the Newns−Anderson model) is different
from the statistical interpretation proposed in ref 4.
The statistical analysis of the measured conductance and Vt

histograms from ref 4 relies upon three pieces: (i) the
assumption that the conductance can be described using
Simmons’ approach22 to tunneling, (ii) acceptance of the
barrier-shape conjecture (εh = eVt), and (iii) the assumption
that the correlations between Vt and G and those between G
and the contact conductance A can be quantified by means of
the Pearson correlation coefficient. The Pearson coefficient
P(X,Y) for two statistical variables X and Y is defined as P(X,Y)
= (⟨XY⟩ − ⟨X⟩ ⟨Y⟩)(⟨X2⟩ − ⟨X⟩2)−1/2(⟨Y2⟩ − ⟨Y⟩2)−1/2, where
⟨···⟩ stands for the statistical average.
Condition (ii) is similar to the present eq 4, but condition (i)

substantially differs from eq 3. From (i) and (ii), the
dependence G = A exp[−(constant)Vt

1/2] was inferred in ref
4. Because Vt (or εh) enters the square root in the above
expression, a standard deviation δvt yields a relative
conductance variance amounting δvt/2. For a typical value δvt
∼ 20%, this is ∼10%, which is indeed at least 1 order of
magnitude smaller than experimentally observed4 but at the
same time much smaller than the value obtained within the
Newns−Anderson model. In the latter model, the conductance
(eq 3) is expressed in terms of the square of εh, and therefore,
the εh fluctuations contribute substantially to the observed G
fluctuations, as noted above.
Certainly, Γ fluctuations can also be important. Unfortu-

nately, estimating their impact on the G histograms from the
experimental data4 is not so straightforward as that of the εh
fluctuations: in general, eq 7 cannot be inverted to deduce q(Γ)
in terms of the experimentally accessible histograms p(εh) [i. e.,
v(Vt)] and w(g). For the benefit of experimentalists, a
“modeling flow chart” for a possible approach to data
processing is sketched in the Supporting Information. For
simplicity, I will also assume here a Gaussian distribution
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To determine its relative standard deviation δΓ, one can require
that the fwhm values of the theoretical w(g) and experimental
G histograms coincide (i.e., ΔG/Gm.p. = 1.32). The value thus
obtained is δΓ = 16%. The theoretical curve for w(g) obtained
by inserting eqs 8 and 10 into eq 7 reasonably reproduces the
experimental histogram in the range around the peak, as shown
in Figure 2.
As evidence that the effects of εh fluctuations on the

conductance histograms are altogether ineffective and that
fluctuations in the contact conductance are essential, ref 4
invoked the values deduced for the Pearson coefficients,
namely, P1 ≡ |P(G,Vt)| ≪ 1 and P2 ≡ P[log(G),log(G/
exp(−Vt

1/2)] ≈ 1. However, statistics tells us that the Pearson
coefficient P(X,Y) quantifies only the linear statistical depend-
ence between X and Y. A large [small] P value P(X,Y) ≈ 1
[|P(X,Y)| ≪ 1] can be taken to indicate merely an almost linear
statistical [in]dependence. For example, with the values δvt =
δεh = 23% and δΓ = 16%, within the present model [i.e., by
using eqs 3, 8, and 10 to compute, e.g., ⟨G⟩ ≡ ∫ dεh dΓ p(εh)
q(Γ)G(εh,Γ)] one gets P1 = 0.10 and P2 = 0.98, which are
consistent with those computed from the experimental data.4

Nevertheless, as discussed above, the impact of εh fluctuations
on the G histogram is substantial, and the quantity G/
exp(−Vt

1/2) has no physical meaning within the Newns−
Anderson model.
Although reasonable, the assumption of eq 10 represents

only an approximation. It does not allow the shape of the
experimental G histograms to be reproduced as accurately as
the experimental I−V curves shown in Figure 1 and Figures S1
and S2 in the Supporting Information. Obviously, the actual
q(Γ) distribution is not Gaussian. With the above choice δΓ =
16%, the experimental G histogram can be reproduced well in
the peak region (say, |G − Gm.p.| ≳ Gm.p./2), but the small-G
regime is less satisfactorily described. The small-G region can
be better described by larger δΓ values (which further reduce
the Pearson coefficient P1). Using δΓ = 25% significantly
improves the description at small G values (see Figure 2), but
the higher-G regime is less satisfactory reproduced.
The one-dimensional (1D) distribution calculated in Figure

2 does not take full advantage of the two-dimensional (2D)
experimental data of ref 4. 2D distributions can also be
obtained within the present approach. Figure 3 presents the
result of a 2D calculation for log10(G/G0) versus Vt. The
agreement with the experimental results from Figure 5a of ref 4
is remarkable. The differences between the locations and
extensions of the high-probability regions obtained theoretically
and experimentally are rather small. The slight experimental
asymmetry between positive and negative biases (Vt+ is slightly
different from Vt−) can be20 but has not been included into the
theory in order to simplify the analysis. The fact that the
theoretical 2D histogram is somewhat more extended than the
experimental one at larger G values is related to the fact that the
value δΓ = 25% employed in Figure 2 is good for small G but
less appropriate for larger G, as noted above. One should also
mention a difference between the theoretical statistical analysis
and the experimental one at higher voltages. Theoretically, a
statistical event is characterized by a pair (εh, Γ) that occurs
with a probability p(εh)q(Γ), which is assumed to be V-
independent. The experimental probability is quantified by the
number of “counts” and, as noted in ref 4, the count numbers

Figure 2. Conductance histograms for ODT-based H-junctions at V =
0.2 V measured experimentally4 and computed theoretically without
(δΓ = 0) and with (δΓ = 16% and 25%) Γ fluctuations. The significant
impact of the εh fluctuations on the G histogram should be noted. See
the main text for details.
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are smaller at higher V than at lower V. This difference may be
reflected in a certain “deformation” of the high-probability
regions at higher values of Vt.
An important point to note is that the standard deviations δvt

in refs 4 and 3 were deduced in different ways. The stochastic
events of ref 4 are characterized by random g values, and the
integrated result v(Vt) is expressed by eq 7. In ref 3, g = gm.p. is
fixed, and the Vt histogram is expressed by F(Vt,gm.p.). Because
it represents the product of two distributions [cf. eq 5], its
width δvt̃ should be smaller, i.e., δvt̃ < δεh. The fact that in
general the widths in ref 3, δvt̃ ≈ 10% (<δεh), are smaller than
those in ref 4, δvt = δεh ≈ 20%, can be taken as important
support for the present analysis.

■ SUGGESTIONS FOR ALTERNATIVE DATA
PROCESSING

As discussed above, some differences between the theoretical
and experimental histograms of Figure 2 indicate departures of
the actual Γ distribution from a Gaussian distribution. Unlike
the statistical distribution p(εh), which should coincide with the
experimental distribution v(Vt) (which is Gaussian,4 as noted
above), q(Γ) cannot be directly extracted from experiment. In
general, the distribution q(Γ) could be a nontrivial function. As
shown in eqs 2, Γ = (ΓsΓt)

1/2 is expressed in terms of two
independent statistical variables (Γs and Γt), which characterize
the coupling to two independent electrodes.
To extract q(Γ) directly, one can suggest a different

approach. With the selection of I−V curves having Vt equal
to a given value V̅t (practically, this means having Vt within a
range as narrow as possible to permit a reliable statistical
analysis) and the construction of G histograms w(g)|δεh=0
wherein εh fluctuations are (practically) suppressed [i.e., p(εh)
≈ δ(εh − √3/2V̅t); green line in Figure 2], then eq 3 gives Γ ≈
√3/2g

1/2V̅t, and eqs 2, 4, and 7 yield

Γ ≈ |δ =q g w g( ) 2 ( ) v 0t (11)

Information on the Γ (and εh) distributions can also be
obtained directly, without assuming a certain analytical (e.g.,
Gaussian) expression, using the individual data points gi and Vt,i
(i = 1−N) from conductance and Vt measurements. Equations
4 and 3 can be utilized to compute relevant averages (n = 1)

and eventually also higher-order moments (n ≥ 2), such as
⟨εh

n⟩ ≈ (1/N)∑iVt,i
n, ⟨Γn⟩ ≈ (1/N)∑iVt,i

ngi
n/2, and ⟨εh

nΓn⟩ ≈
(1/N)∑iVt,i

2ngi
n/2 (where the Bessel statistical corrections N →

N − 1 and the factor 1.154 in eq 4 have been omitted for
simplicity). In particular, this procedure permits checking of, for
example, whether the quantities ⟨εhΓ⟩ and ⟨εh⟩⟨Γ⟩ are equal
(i.e., the extent to which the corresponding variables are
statistically uncorrelated), as implicitly assumed in the above
analysis. A certain correlation between εh and Γ cannot be a
priori ruled out, and it could contribute to an understanding of,
for example, the different HOMO energy offset values deduced
from transport and UV photoelectron spectroscopy (UPS)
measurements.10

■ CONCLUSION

The present work makes it clear that there is an important
difference between the conductance of a molecular junction
and its transition voltage. G depends both on the MO energy
offset and on the electrode−molecule couplings. The Γ
distributions turn out to be not so broad as one could infer
by relating them to the strong fluctuations in the contact
conductance claimed in ref 4. One can still experimentally
distinguish between high-, medium-, and low-conductance
junctions (H-, M-, and L-junctions) based on alkanedithiols.4

There still remain fingerprints of the discontinuous changes in
contact geometry, molecular conformation,4,32−34 or the local
electrodes’ density of states (cf. eq 2)35 that would be wiped
out by continuous broad Γ distributions. Still, regarding the
conductance as a molecular property should be done with care,
because it is much more affected by fluctuations in the MO
offset than in the transition voltage. The fact that the latter is
much less affected (almost an order of magnitude) is important,
as it makes Vt a molecular signature, whichs validates TVS as a
tool for investigating molecular transport.
In the light of the present study, extending the statistical

analysis to other properties appears to be a natural next step. In
view of recent advancements in molecular thermoelectric-
ity,15,36,37 a possible quantity of interest would be the Seebeck
coefficient S = (π2kB

2T/3e)∂ log /∂ε ≈ π2kB
2T/(3eε0), where

T is the temperature and kB is Boltzmann’s constant.
38 Similar

to Vt, it should be strongly correlated to ε0 and should possess a
histogram almost identical to that of the latter.
In conclusion, the approach initiated experimentally in ref 4

and developed theoretically in the present paper emphasizes
the usefulness of corroborating statistical information on
transport properties differently affected by stochastic fluctua-
tions. This should motivate further experimental and theoretical
studies, which can significantly contribute to a deeper
understanding of the charge transfer in single-molecule devices
and characterization of device functions.
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by the various colors) vs log10(G/G0) and Vt (in V) calculated within
the present approach for δεh = 0.23, δΓ = 0.25, and the experimental
values Gm.p./G0 = 2.8 × 10−4 and Vt

m.p. = 1.46 V characterizing the
ODT H-junctions of ref 4. It should be noted that the x and y ranges
match the upper panel of Figure 5a in ref 4, which is the experimental
counterpart of this theoretical histogram.
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