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ABSTRACT: We present a computational investigation into
the line shapes of peaks in conductance histograms, finding
that they possess high information content. In particular, the
histogram peak associated with conduction through a single
molecule elucidates the electron transport mechanism and is
generally well-described by beta distributions. A statistical
analysis of the peak corresponding to conduction through two
molecules reveals the presence of cooperative effects between
the molecules and also provides insight into the underlying
conduction channels. This work describes tools for extracting additional interpretations from experimental statistical data, helping
us better understand electron transport processes.
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Molecular electronics, the incorporation of molecular
components into electrical circuits, has become an active

research topic1 with relevance to catalysis, solar cells, and
scanning probe microscopies. Requiring a detailed under-
standing of charge transfer/transport processes (i.e., how
electrons traverse molecules), molecular electronics asks new
conceptual questions, most notably,1−11 “what is the con-
ductance of a single molecular wire connecting two electrodes?”
Furthermore, the scaling of such a single-molecule conductance
to multiple molecular wires in parallel is also of interest.2,4,9,12,13

The key problem in determining a single-molecule
conductance is reproducibility.2−7,9,14−24 Both experimental
and theoretical studies have exposed the sensitivity of
conductance to changes in the molecule−electrode inter-
face(s),4−10,14−16,21,22,25−28 and many binding motifs (for
example, gold−thiol bonds) exhibit indiscriminate adsorption
chemistries.9,10,21,29,30 Even though progress has been made
toward the simultaneous determination of conductance and
molecular geometry using, for example, Raman spectrosco-
py,31,32 we are generally unable to determine, let alone control,
the microscopic geometric details necessary for a well-
characterized single-molecule conductance.
This irreproducibility is familiar from studies of quantum

point contacts (where groups of metal atoms, instead of
molecules, bridge the electrodes),33−36 and statistical analyses
developed for characterizing quantum point contacts have been
applied to molecular wires.2−4,6−10,14,16,17,19,20,22,23,27,28,37 Es-
sentially, conductance measurements from many molecular
wire junctions (enough to get reliable statistics, typically
thousands or more) are compiled into a conductance histogram

(the number of times a conductance G is measured versus G),
which reports, abstractly, the probability density function38 for
measuring a particular conductance. Example conductance
histograms are shown in Figure 1.

The features in a conductance histogram have, to date, been
interpreted in several ways. First, the mean (or mode) of the
first peak is attributed to the single-molecule conduc-
tance.2−8,15,17,18,22,23 Second, the width of this peak (its
variance) is related to the adsorption chemistry of the molecule
with the electrodes14−16,18,19,23,26,39−42 and is thus indicative of
numerous experimental factors. Third, recognizing that electron
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Figure 1. Sample conductance histograms from previous experimental
studies. (a) Transport through gold quantum point contacts. (b)
Transport through octanedithiol molecules; the peaks at (2.5 and 4.6)
× 10−4 G0 correspond to transport through one and two molecules,
respectively. The data in panels a and b are from refs 28 and 7,
respectively, and are used with permission.
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transport through molecules is usually a tunneling process (that
is, the conductance can vary exponentially with the molecule−
electrode geometry), the shape of this peak is often well-
described by a log-normal distribution.14,21,22,24,30,40,43,44 We
note, though, that both Gaussian6,9,15,36,41 and Lorent-
zian17,28,41 line shapes have also been used and can, empirically,
provide reasonable fits. Lastly, the means/modes of the second
and third peaks, if present, are the combined conductances
through two and three molecules, respectively.2,3,7,9,10,15,30

These multiple-molecule peaks tend to appear at (or near)
integer multiples of the one-molecule peak.
In this work, we further explore the line shapes of

conductance histogram peaks, showing that, similar to conven-
tional spectroscopies (e.g., UV/vis or NMR), these line shapes
contain a substantial amount of information. Specifically, we
find that the electron transport mechanism (resonant or
nonresonant tunneling) is discernible from the one-molecule
peak. Each of these mechanisms has a characteristic line shape
that is well-described by a beta distribution,45,46 and one-
molecule peaks are generally captured by the sum of these two
beta distributions (although the log-normal distribution
provides a good fit in specific cases). Additionally, the line
shape of the two-molecule peak indicates the presence of
cooperative effects between the molecules and also partially
reveals the underlying conduction channels47 through the
molecules. After briefly introducing our general (but simple)
model and the relevant aspects of electron transport theory, we
proceed to demonstrate these assertions.
Conductances are calculated within the Landauer−Imry

(coherent scattering) formalism.48 At zero temperature, the
zero-bias conductance is

=G G T E( )0 F (1)

where G0 ≡ 2e2/h is the conductance quantum, T(E) is the
summed transmission through all conduction channels, and EF
is the electrodes’ Fermi level. We use a tight-binding model of
the molecular wire junction to obtain T(E), where each
molecule contributes a single state/conduction channel
(presumably the highest-occupied or lowest-unoccupied
molecular orbital) and connects to two semi-infinite electro-
des.12,13,49 Although this model is simple, it qualitatively
captures the fundamentals of electron transport and produces
exact solutions,13 thereby facilitating the large number of
“measurements” needed to construct conductance histograms.
For clarity, the full details of our model are relegated to the
Supporting Information; here we note the model’s three key
parameters, (i) the energy level of each molecular wire, (ii) the
electrode-wire coupling, and (iii) the interwire coupling.
Finally, we simulate conductance histograms by randomly
choosing, for each conductance measurement, these three
parameters from Gaussian distributions. The mean values of
these parameters are chosen to be representative of realistic
systems, following the extensive discussion in section 5 of ref
12. The standard deviations are more arbitrary because they
correspond to variations in both the molecular geometry and
the adsorption chemistry, which is influenced by, for example,
the stability/selectivity of the binding motif and temperature.
We assign smaller standard deviations to the wire site energies
and the molecule−electrode couplings (these depend mostly
on the adsorption chemistry); the interwire coupling also
depends on the relative geometries of the two wires and thus
receives a larger standard deviation. Table 1 lists the means and
standard deviations used throughout the ensuing discussion.

One-Molecule Junctions. Let us first examine the line
shapes of one-molecule peaks. Figure 2a shows the trans-

mission spectrum for a molecular wire junction with the mean
parameters listed in Table 1. The spectrum is representative of
coherent transport through a single wire/channel; the line
shape is mostly Lorentzian with deviations induced by the wire-
electrode coupling. Should the Fermi level be near the
spectrum’s maximum (the resonance, highlighted in blue),
the sole conduction channel is completely open, and electron
transport occurs by resonant tunneling. Conductances

Table 1. Model Parameters Used to Simulate the
Conductance Histograms in Figures 2−4a

model parameter mean (eV) std. dev. (eV)

wire site energy 1.0 0.03
wire-electrode coupling −0.6 0.0375
interwire coupling −0.1 0.075

aFor each individual conductance “measurement,” the parameters are
chosen from Gaussian distributions with these means and standard
deviations.

Figure 2. (a) Transmission spectrum through a single wire using the
average parameters in Table 1. The red, yellow, green, and blue
shadings indicate regimes where transport is far off resonance, off
resonance, near resonance, and on resonance, respectively. The
shadings’ widths depict uncertainty in the molecular geometry, which
produces a range of observed conductances (transmissions) for each
“measurement.” The other panels show simulated conductance
histograms for transport (b) far off resonance, (c) off resonance, (d)
at resonance, and (e) near resonance, along with proposed line shapes.
Each histogram is independently normalized. The dashed lines are the
best-fit log-normal distributions (eq 2), the solid lines are the best-fit
beta distributions (eq 3), and, for panel e, the short dashed line is the
best-fit “double-beta” distribution (eq 4). Whereas the log-normal
distribution is excellent for off resonant transport, it fails at or near
resonance. The (double-)beta distribution adequately describes all
peaks. As discussed in the text, the skewness of the peak is related to
the transport mechanism.
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approach G0 in this case, although we note that inelastic effects
(absent from our model) may reduce the molecular
conductance.50,51 Such resonant tunneling is commonly
observed in quantum point contacts; see Figure 1a. At Fermi
levels away from this resonance (red or yellow), transport
occurs by nonresonant tunneling, and conductances are much
smaller than G0. This case is typically reported in transport
through molecules (Figure 1b). Lastly is the case of near
resonant tunneling (green), which has recently been observed
in molecular junctions with direct Au−C bonds.28

Figure 2b−e displays our simulated conductance histograms
for these four cases. We used 25 000 conductance “measure-
ments” to construct each histogram, and each histogram is
independently normalized (resulting in the arbitrarily scaled
ordinate axes). To develop a theory for these line shapes, we
consider the measured conductance through the single channel
to be a continuous random variable ( 1) with probability

density function ̂
1.

We begin with the off resonance cases in panels b and c. The
dashed lines display the best-fit log-normal distributions, ̂

1(G)

= ̂ (G/G0;μ,σ
2), where
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is the log-normal distribution.45 In agreement with previous
studies,14,22,30,40,43,44 these off-resonant histogram peaks are

well-described by ̂ . The case of resonant transport in panel d,
however, exposes the inadequacy of the log-normal distribution
for describing conductance histogram peaks. First, the log-
normal distribution allows G to be any positive value despite
the physical restriction that 0 ≤ G ≤ G0. In off-resonant cases,

̂ yields a negligible probability of measuring a conductance
greater than G0; however, this is violated at resonance.
Moreover, the log-normal distribution has positive skewness45

(crudely, a peak to the left of a longer right tail), whereas the
histogram in panel d is negatively skewed. Gaussian and
Lorentzian distributions, which have alternatively been used to
describe off-resonant peaks, have similar drawbacks and will
also fail to capture the resonant peak.
The beta distribution38,45,46

α β
α β

β̂ = −α β− −
x

x x
B

( ; , )
(1 )
( , )

1 1

(3)

ameliorates these concerns because it restricts 0 ≤ x ≤ 1 and
has flexible skewness. Note that α > 0 and β > 0 in eq 3 are
parameters and that B(α,β) is the beta function. Supposing that
the one-molecule conductance peak is beta-distributed, ̂

1(G)
= β̂(G/G0;α,β), the solid lines in Figure 2b−e display the best-
fit beta distributions. It is evident that the beta distribution
provides a good description of both on- and off-resonant peaks
in conductance histograms. Furthermore, the peak line shape is
directly tied to the transport mechanism. At resonance, the
transmission is capped at 1, and microscopic variations can only
decrease the conductance (Figure 2a). Because G = G0 for the
average parameters, the histogram peak bunches up at G0 with a
long tail to the left (negative skewness) and has nonzero
density at G0 (β ≤ 1 in eq 3). Similarly, histogram peaks for off-
resonant transport do not have density at G0 (β > 1) and are
positively skewed. (From Figure 2a, the transmission spectrum
is essentially linear on a semilog scale; that is, fluctuations in the

molecular geometry are more likely to increase the con-
ductance.). In this sense, the line shape of a conductance
histogram peak reflects the shape of the transmission spectrum
near the Fermi level.
As the final case for a one-molecule peak, we consider near

resonant transport in Figure 2e. Neither the log-normal nor the
beta distribution adequately captures the line shape, as both
predict incorrect modes and miss the bump at G0. In this case,
it is likely that the transport is sometimes resonant and
sometimes nonresonant, depending on the microscopic details
of each individual measurement. To explore this hypothesis, we
let 0 ≤ γ ≤ 1 be the probability that transport occurs by
nonresonant tunneling. Then, the line shape might be
described by a “double-beta” distribution that includes
contributions from both transport mechanisms

α β α β γ

α β γ α β

β̂

= γβ̂ + − β̂

G G

G G G G

( / ; , , , , )

( / ; , ) (1 ) ( / ; , )
2 0 1 1 2 2

0 1 1 0 2 2 (4)

where β1 > 1 corresponds to nonresonant transport and 0 < β2
≤ 1 is resonant transport. The short-dashed line in the inset of
Figure 2e plots the best-fit double-beta distribution, showing
that this distribution captures the peak’s line shape. Because the
beta distribution is a double-beta distribution with γ = 0 or 1,
the double-beta distribution generally captures the line shape of
a one-molecule peak. Table 2 lists the best-fit double-beta
parameters for each of these four cases.

Therefore, the line shapes of one-molecule peaks in
conductance histograms reveal the electron transport mecha-
nism (resonant vs nonresonant tunneling), and, if near
resonance, the probability of either mechanism. Although the
ability to distinguish resonant from nonresonant tunneling in
these line shapes is interesting, we pause to discuss its
significance. In principle, the two mechanisms are identifiable
from the location of the peak; resonant tunneling will yield a
conductance close to G0, whereas nonresonant tunneling will
produce a much smaller conductance. This is easily seen in
Figures 1 and 2. The implicit assumption in such an analysis,
however, is that only one channel contributes to conduction.
Systems with multiple active conduction channelsperhaps
quantum point contacts with multivalent metals,34 molecules
with degenerate frontier orbitals,52,53 or junctions with multiple
molecular wires13may have a peak near G0 without any
conduction from resonant tunneling. As we now discuss, such a
multiple-channel peak will have a different line shape than that
seen in Figures 1a and 2d; that is, the peak line shape
corroborates the peak location when identifying the transport
mechanism.

Two-Molecule Junctions. Although the generalization to
multiple conduction channels from a single channel is
mathematically simplewe still use eq 1multiple channels
display much richer physics due to the presence of cooperative
effects,2,4,9,12,13 interferences,13,54 or both between the channels.

Table 2. Best-Fit “Double-Beta” Parameters (eq 4) for Each
Histogram Peak in Figure 2

histogram α1 β1 α2 β2 γ

2(b) 11.2 195 1
2(c) 25.7 56.4 1
2(d) 55.2 0.537 0
2(e) 54.9 3.24 35.2 1.00 0.701
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For this discussion, our two channels will come from two
identical molecules in the junction (for simplicity); the other
cases listed above, or the presence of additional molecular
wires, will not qualitatively change our results. Under these
conditions, Figure 3a displays the transmission spectra through

two isolated wires (no interference or cooperative effects) and
two coupled wires, both for the average parameters. Figure 3b−
e then shows conductance histograms for the four Fermi levels
marked in Figure 3a. Each of these histograms features a one-
molecule peak fit with a double-beta distribution as well as the
simulated two-molecule peak. As before, we consider the
conductance through two molecules to be a random variable
( 2) and interpret the two-molecule peak as the probability

density function ( ̂
2) for 2

Without cooperative effects, Ohm’s law tells us that the
conductance through two molecular wires is twice that through
a single wire. Therefore, we expect 2 = 2 1 and

38

̂ = ̂ ⎜ ⎟
⎛
⎝

⎞
⎠G

G
( )

1
2 22 1 (5)

This line shape is also plotted in each of Figure 3’s histograms.
When cooperative effects are small (i.e., near Fermi levels

where the two transmission spectra in Figure 3a are
approximately equal), eq 5 adequately describes the two-
molecule peak; see panels b and c. Unsurprisingly, cooperative
effects can cause significant deviations from this form, as
evident in panels d and e.
We recently discussed13 how cooperative effects shift the

underlying conduction channels47 of the system, a process that
ultimately changes the conductance. It is therefore likely that
the line shape of a two-molecule peak encodes information on
the two conduction channels. For this system, the channels are
the “bonding” (in-phase overlap of the molecular levels) and
“antibonding” (out-of-phase) channels13 and are each similar to
an isolated channel. In this sense, if we could exclusively
measure the conductance through one of these channels, then
its histogram should be well-described by a double-beta
distribution. Figure 4 verifies that this is indeed the case.

Suppose now that ± are the random variables for the
conductances through the bonding and antibonding channels
(with probability density functions ±̂), such that 2 = + +

−. Then, if + and − are independent random variables (as a
first approximation),55 we find38

∫ ∫

∫
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where δ is the Dirac delta function. Figure 4 shows that this line
shape is reasonably accurate, even when cooperative effects are
strong; the discrepancies most likely stem from our assumption
that + and − are independent. Furthermore, this ̂

2 is
generally not a (double-)beta distribution itself,46 meaning that
multiple-channel peaks near G0 will have different line shapes
than a one-channel peak under resonant tunneling. Regardless
of these nuances, Figures 3 and 4 demonstrate that the line

Figure 3. (a) Transmission spectra through two isolated wires (no
cooperative effects) and two coupled wires for the average parameters
in Table 1 (solid and dashed lines, respectively). Near the isolated
molecules’ resonances (E ≈ 1.2 eV), cooperative effects diminish
transmission, whereas they tend to enhance it away from these
resonances.13 The dotted vertical lines (from left to right) mark the
Fermi levels for the conductance histograms displayed in panels b−e,
respectively. Each conductance histogram displays the one-molecule
peak (red) with its best-fit double-beta distribution (dashed line) along
with the simulated two-molecule peak (blue) and the predicted line
shape if cooperative effects are ignored (eq 5, solid line). When
cooperative effects are small (the two transmission spectra are roughly
equal at the Fermi level, panels b and c), the predicted line shapes are
reasonable; however, stronger cooperative effects induce noticeable
deviations (panels d and e). Each histogram peak is independently
normalized.

Figure 4. Conductance histograms exploring the relationship between
the underlying conduction channels and the line shape of the two-
molecule peak. The four panels correspond to those in Figure 3:
Figure 4a corresponds to Figure 3b and so on. The main panels show
independent histograms for both channels (blue and green) along with
each channel’s best-fit double-beta line shape. The insets redisplay the
two-molecule histograms from Figure 3 along with the line shapes
predicted by adding the two channels (eq 6). While slightly inferior to
the line shapes presented in Figure 3 when cooperative effects are
small, eq 6 adequately predicts the two-molecule line shapes without
regard to the magnitude of cooperative effects. The two-molecule line
shapes encode information on the underlying conduction channels.
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shape of a two-molecule peak reveals the presence of
cooperative effects and contains some information on the
underlying conduction channels.
We conclude our discussion by mentioning other factors that

might impact our analysis. Experimentally, direct tunneling
from one electrode to the other is observed in conductance
histograms as a feature that decays as G increases; see the left of
Figure 1b. Our model does not include any such contribution,
and untangling the actual line shapes of peaks from this
background is not always straightforward. Other work has
reported systematic methods to aid this process.15,18,20,23

Furthermore, our model restricts the conductance through a
single channel to the range 0 ≤ G ≤ G0, whereas in reality
several effects may cause measured conductances to slightly
exceed G0. (See Figure 1a.) Experimental error is one possible
culprit, as is the presence of a second, weakly conducting
channel for some microscopic geometries. A cross-correlation
analysis37,56 of the raw conductance data may help elucidate
this behavior.
Summary. We have examined the line shapes of peaks in

conductance histograms, showing that these line shapes, similar
to those in conventional spectroscopies, possess high
information content. Specifically, the one-molecule peak is
well-described by a “double-beta” distribution (eq 4) that
incorporates contributions from both resonant and non-
resonant tunneling. When near resonance, this line shape
reflects the relative frequencies of these conduction mecha-
nisms. If, however, only one mechanism contributes to
conduction, then the peak will have a distinguishable line
shape; a positive skewness indicates nonresonant tunneling, whereas
a negative skewness corresponds to resonant tunneling. Considering
the two-molecule peak, the line shape reveals the presence of
cooperative effects (compare the two-molecule peak to “twice”
the one-molecule peak, eq 5) and additionally encodes the
nature of the underlying conduction channels (to a good
approximation, eq 6).
To our knowledge, this work represents the first general

analysis of these line shapes, although investigations of one-
molecule peaks under nonresonant tunneling conditions have
been reported.14,15 Despite using a simple model due to the
availability of exact solutions, we believe our results to be
general. For instance, the histogram peaks predicted by our
model in Figures 2 and 3 strongly resemble (at least
qualitatively) those of the experimental histograms presented
in Figure 1. That said, this contribution is just a first step.
Additional work to understand the (small) correlation between
the underlying conduction channels will enhance our
predictions of multiple-channel peaks. Moreover, the inverse
problem of inferring the conduction channels from a multiple-
molecule peak is far more relevant and will be discussed at a
later time. Here we suffice to show that transport mechanisms
determine the one-molecule peak and conduction channels
dictate multiple-molecule peaks.

■ ASSOCIATED CONTENT
*S Supporting Information
Full details of our model and of the best-fit distributions in
Figures 2−4. This material is available free of charge via the
Internet at http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: reutermg@ornl.gov.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Gemma Solomon for helpful conversations and
Latha Venkataraman and Nongjian Tao (and their groups) for
sharing with us the data in Figure 1. M.G.R. performed this
research as a Department of Energy (DOE) Computational
Science Graduate Fellow (grant no. DE-FG02−97ER25308)
while at Northwestern University and as a Eugene P. Wigner
Fellow at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC, for the U.S. DOE under
contract DE-AC05−00OR22725. We further acknowledge
support from the NSF (DMR-1121262), MRSEC (DMR-
0520513), and the DOE (DE-SC0001785).

■ REFERENCES
(1) Cuevas, J. C.; Scheer, E. Molecular Electronics; World Scientific,
Hackensack, NJ, 2010.
(2) Xu, B.; Tao, N. J. Science 2003, 301, 1221−1223.
(3) Mayor, M.; Weber, H. B. Angew. Chem., Int. Ed. 2004, 43, 2882−
2884.
(4) Xiao, X.; Xu, B.; Tao, N. J. Nano Lett. 2004, 4, 267−271.
(5) Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell,
D.; Schiffrin, D. J. Phys. Chem. Chem. Phys. 2004, 6, 4330−4337.
(6) Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.;
Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6, 458−462.
(7) Li, X.; He, J.; Hihath, J.; Xu, B.; Lindsay, S. M.; Tao, N. J. Am.
Chem. Soc. 2006, 128, 2135−2141.
(8) Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. J. Annu. Rev. Phys.
Chem. 2007, 58, 535.
(9) Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers,
F. J. Am. Chem. Soc. 2008, 130, 318−326.
(10) Nichols, R. J.; Haiss, W.; Higgins, S. J.; Leary, E.; Martín, S.;
Bethell, D. Phys. Chem. Chem. Phys. 2010, 12, 2801−2815.
(11) Leary, E.; Gonzaĺez, M. T.; van der Pol, C.; Bryce, M. R.;
Filippone, S.; Martin, N.; Rubio-Bollinger, G.; Agraït, N. Nano Lett.
2011, 11, 2236−2241.
(12) Landau, A.; Kronik, L.; Nitzan, A. J. Comput. Theor. Nanosci.
2008, 5, 535.
(13) Reuter, M. G.; Solomon, G. C.; Hansen, T.; Seideman, T.;
Ratner, M. A. J. Phys. Chem. Lett. 2011, 2, 1667−1671.
(14) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. J. Phys. Chem. B
2005, 109, 16801−16810.
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