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Conductance of a Molecular Junction

M. A. Reed,* C. Zhou, C. J. Muller, T. P. Burgin,
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Electron transport through a metal-molecule-metal junction PR-B 5 9’ 125 05’ 1999.

C. Kergueris, J.-P. Bourgoin,* and S. Palacin
Service de Chimie Moléculaire, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

D. Esteve and C. Urbina
vervice de Physique de I'Etat Condensé, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

M. Magoga and C. Joachim
CEMES-CNRS, BP4347, 31055 Toulouse Cedex, France
(Received 17 November 1998)
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FIG. 1. Ideal sample. A conjugated molecule is chemisorbed
onto the gold electrodes via the thiolate terminal groups.
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FIG. 3. Scanning electron microscope picture of a suspended
s junction before breaking.
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FIG. 7. Typical (a) asymmetric (solid line) and (b) symmetric
(dashed line) /-V curves recorded at room temperature for gold-
T3-gold junctions. Both curves were obtained by averaging over
five voltage sweeps.
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Field-Effect Modulation of the Conductance of
Single Molecules
Jan Hendrik Schon, et al.
Science 294, 2138 (2001);
DOI: 10.1126/science. 1066171
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Kondo resonance in a
single-molecule transistor Coulomb blockade and the Kondo

effect in single-atom transistors
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Kondo Effect in Electromigrated Gold 2005

Break Junctions Vol. 5, No. 9
1685—1688

A. A. Houck,'# J. Labaziewicz.! E. K. Chan.' J. A. Folk,** and 1. L. Chuang!

Center for Bits and Atoms and Depariment of Physics, Massachusetrs Instsute of
e l',‘l"l'l'e"-;'_'n , Cambridge, Massachusens (02139, and J‘)C'.I"ln'f fmeenl o f'.'l"- vies, Harvard

'S ) . 130
Universiry, Camiw dge, Massachuserns 02138

Mecenvad Apnl 23, 2005, Fewvisad Manuscnp! Recaived July 12 2005

We present gate-dependent transport measurements of Kondo impurities in bare gold break junctions, generated
electromigration process that is actively controlled. Thirty percent of measured devices show zero-bias conduct:
dependence suggests Kondo temperatures ~7 K. The peak splitting in magnetic field is consistent with theoretic
though in many devices the splitting is offset from 2gugB by a fixed energy. The Kondo resonances observed he
scale metallic grains formed during electromigration.

Bias Voltage (mV)

0
Gate Voltage (V)

Figure 2. Differential conductance maps for four devices at 250
mK. (a) Coulomb blockade. (b) Superposition of a broad Coulomb
blockade diamond (centered around gate voltage 1.8 V) and the
Kondo effect. (¢) Transition from Kondo resonance to Coulomb
diamond. The absence of conductance features at negative bias may
be due to an asymmetric lead coupling. (d) Gate-independent Kondo
effect. (¢) Numerical derivative of dc¢ measurements; others
measured with 50 ¢V ac bias at 47 Hz.
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Figure 1. lllustration of the principle of inelastic electron tunneling spectroscopy (IETS): If the difference
in chemical potential between the two electrodes is larger than the vibrational energy of one molecular
mode, the electron can cross the junction losing one quantum of vibrational energy. This additional
inelastic channel causes a small increase in conductance at V=hw/e, better evaluated as a peak in a
plot of d?//dV? versus V.
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Measurement of the conductance
of a hydrogen molecule

R. H. M. Smit*, Y. Noat*{, C. Untiedt*, N. D. Lang:, M. C. van Hemert$

& J. M. van Ruitenbeek*

* Kamerlingh Onnes Laboratorium, Universiteit Leiden, PO Box 9504,
2300 RA Leiden, The Netherlands

+ IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights,

New York 10598, USA

§ Leids Instituut voor Chemisch Onderzoek, Gorlaeus Laboratorium, Universiteit

Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands
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Figure 1 Conductance curves and histograms for clean Pt, and for Ptin a H, atmosphere.
Inset, a conductance curve for clean Pt (black line) at 4.2 K recorded with a bias voltage of
10 mV, before admitting H, gas into the system. About 10,000 similar curves are used to
build the conductance histogram shown in the main panel (black), which has been
normalized by the area under the curve. After introducing H, gas, the conductance curves
change qualitatively as illustrated by the grey curve in the inset, recorded at 100 mV. This
is most clearly brought out by the conductance histogram (grey; recorded with 140 mV
bias). Briefly, the mechanically controllable break-junction technique works as follows.
Starting with a macroscopic metal wire, a notch is formed by incision with a knife. The
samples are mounted inside a vacuum container and pumped to a pressure below

5% 10~ mbar. Next, the system is cooled to 4.2 K in order to attain a cryogenic vacuum.
After cooling, the sample wire is broken at the notch by bending of the substrate onto
which it has been fixed. The clean, freshly exposed fracture surfaces are then brought
back into contact by slightly relaxing the bending. With the use of a piezoelectric element,
the displacement of the two electrodes can be finely adjusted to form a stable contact of
atomic size. A thick copper finger provides thermal contact to the sample inside the
container.

Nature, 419, 906, 2002.
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Figure 2 Differential conductance (top) and its derivative (bottom) for a Pt/H, contact
taken at a conductance plateau close to 1Gy. The differential conductance is recorded by
a lock-in amplifier using a modulation amplitude between 0.88 and 1.5 mV, s at 7 kHz
and a time constant of 10 ms, and the derivative is numerically calculated. A full spectrum
is recorded in 10s.
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Figure 3 Vibration mode energies obtained from point contact spectra similar to that
showninFig. 2. Open circles, Pt/H,; open squares, Pt/D; filled circles, P/HD. The vertical
scale shows the number of spectra with energies within a bin size of 2meV. The inset
shows the same data with the energy axis scaled by the factors expected for the isotope
shifts of the hydrogen molecule, wy, /wp, o< /My, /My, = V2=1.414 (open
squares), and wy, /whp o< V«"’/nm‘;’f))H: =/ 3/2

3/2 =1.225 (filled circles).

Counts
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1
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Figure 4 Conductance histogram (black, left axis) and r.m.s. amplitude of the

conductance fluctuations oy (0pen squares, right axis) for a Pt/H, sample. These data
were obtained using 2,000 cycles of contact breaking. The conductance and its derivative
were measured with two parallel lock-in amplifiers, detecting the frequencies fand 2f,

with 140 mV bias voltage and 20 mV modulation amplitude. The derivative signal is used
to calculate the average of the conductance fluctuations, ogy, and each of the points is
obtained from the data belonging to one bin of the histogram.
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Binggian Xu, et al.
Science 301, 1221 (2003);
AVAAAS DOI: 10.1126/science. 1087481
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Fig. 1. (A) Conductance of a gold contact formed between a gold STM tip and a gold substrate
decreases in quantum steps near multiples of G, (= 2e?/h) as the tip is pulled away from the
substrate. (B) A corresponding conductance histogram constructed from 1000 conductance curves
as shown in (A) shows well-defined peaks near 1 G, 2 G, and 3 G, due to conductance
quantization. (C) When the contact shown in (A) is completely broken, corresponding to the
collapse of the last quantum step, a new series of conductance steps appears if molecules such as
4,4’ bipyridine are present in the solution. These steps are due to the formation of the stable
molecular junction between the tip and the substrate electrodes. (D) A conductance histogram
obtained from 1000 measurements as shown in (C) shows peaks near 1 X, 2 X, and 3 X 0.01 G,
that are ascribed to one, two, and three molecules, respectively. (E and F) In the absence of
molecules, no such steps or peaks are observed within the same conductance range.

Measurement of Single-Molecule Resistance by
Repeated Formation of Molecular Junctions

Vbias=13 mV A

Counts

Vbias=50 mV B

2
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3 2
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Fig. 2. (A to C) Current histograms of 4,4’ bipyridine constructed from 1000 measurements at
different bias voltages (V,,;.,). Peak currents increase with the bias voltage and are used to obtain
characteristic /-V curves. (D) /-V curves from the first three peaks. (E) When the second peak is
divided by 2 and the third peak by 3, all the three curves collapse into a single curve. The dashed
line shows the differential conductance (d//dV).
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Effect of Anchoring Groups on Single-Molecule
Conductance: Comparative Study of Thiol-, Amine-, and
Carboxylic-Acid-Terminated Molecules

Fang Chen, Xiulan Li, Joshua Hihath, Zhifeng Huang, and Nongjian Tao*

Department of Electrical Engineering & Center for Solid State Electronics Research, Arizona JACSI 128' 15874' 2006 :

State University, Tempe, Arizona 85287

Received August 11, 2006; E-mail: nongjian.tao@asu.edu
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Dependence of single-molecule junction
conductance on molecular conformation

Latha Venkataraman'*, Jennifer E. Klare>*, Colin Nuckolls>*, Mark S. Hybertsen®* & Michael L. Steigerwald’
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Table 1| Molecular structure and d properties
Conductance (Go)
Molecule number Structure Measured Calculated Peak width* Twist angle (")
1 H2N—©—NH2 64x10° 64x10°° 0.4 -
2 HZNNHZ 154x10°° 21x10°° 08 0
Ph —
3 N 137x10°3 22x10°3 08 17
ML) )N
4 HN-C ) )-NH, 116x 102 16x10° 09 34
4 3
5 H7NNH7 65x 10 12%10 13 48
F FF F
6 H?NNH? 49x10°* 71%10°* 06 52
F FF F
c
7 HZNNHZ 37x10°* 58x10* 0.9 62
c
8 HQNNHZ 76x10°% 64%10°° NA‘ 88
9 HZN O NHZ 18x10 % 35x%10 4 21 -

Table shows molecule structure, measured conductances, calculated relative conductances, relative widths of the histogram peaks (see Supplementary Information for details) and the

calculated twist angle, 6.
*Half-width at half-maximum of the lorentzian fit, normalized to the peak value

The histogram peak was determined after subtracting the Au histogram from the data, as the raw data could not be fitted with a lorentzian so a width could not be determined.

from actual maximum of the raw data

Nature, 442, 904, 2006.
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Precision control of single-molecule

electrical junctions

WOLFGANG HAISS'*, CHANGSHENG WANG?, IAIN GRACE2, ANDREI S. BATSANOV2, DAVID J. SCHIFFRIN',
SIMON J. HIGGINS', MARTIN R. BRYCE2, COLIN J. LAMBERT® AND RICHARD J. NICHOLS'

'Centre for Nanoscale Science and Department of Chemistry, University of Liverpool, L69 7ZD, UK

2Department of Chemistry and Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE, UK
3Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

*e-mail: w.h.haiss@liv.ac.uk
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bars represent the standard deviation of group 1 events.
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Measurement of Current-Induced Local
Heating in a Single Molecule Junction

Zhifeng Huang,' Binggian Xu,! Yuchang Chen,’ Massimiliano Di Ventra,** and

Nongjian Tao*t
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Electronics and Chemistry: Varying
Single-Molecule Junction Conductance

Using Chemical Substituents

Latha Venkataraman,*t!' Young S. Park,*' Adam C. Whalley,*' Colin Nuckolls,*'

Mark S. Hybertsen,$/'- and Michael L. Steigerwald*

2]
— P e,
= 010
A4
(o] A
FE @
©F W
- X
H2

E KN |
ol
O30

raaauul Ll 111

0.001 0.01 0.1 1
Conductance (G)

o Bd0.12
. S
2 o
- 3 45 97 ~40.103
*.gk ¢ 219 S
- 11 —0.08
—~ l L l L I L 1.2
O T A
-8 8— I
@ 3
23 4 7
é T (1) 5 v
= [ 1 9¥ 6 10
§ 6 \ i 12
8 ] 1 ",
5 ' 1 '
6.4 6.8 7.2 7.6

lonization Potential (eV)

Figure 2. (A) Measured conductance values against the calculated
ionization potential for the series of 12 molecules tested. The
number of traces measured ranged from 12000 to 30 000 for
different molecules. For each molecule, histograms of 1000
consecutive traces were computed and a Lorentzian was fit to the
molecular peak. The mean and standard deviation of the peak
positions determined the molecule conductance and the error bar
(also listed in Table 1). (B) Square of the calculated tunnel coupling
(4 x %) against the calculated ionization potential.
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Single-Molecule Solvation-Shell Sensing

STM-BJ

E. Leary,' H. Hobenreich,' S.J. Higgins,' H. van Zalinge," W. Haiss,' R.J. Nichols,' C. M. Finch,” I. Grace,”
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PRL, 102, 086801, 2009.
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FIG. 2 (color online). Histogram of the characteristic current
plateaus [/(w)] observed for molecule 3 measured under (lower)
dry argon, Uy, = +1 V, set point current = 7 nA (upper) after
subsequent readmission of ambient (wet) air to the STM cham-
ber, same conditions.
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Electromechanical and Conductance
Switching Properties of Single
Oligothiophene Molecules

Binggian Q. Xu,! Xiulan L. Li,' Xiaoyin Y. Xiao." Hiroshi Sakaguchi,* and

Mongjian J. Tao* !

Deparmment of Electrical Eng

Research, Arizova Stare University,

neering & The Center for Solid Srare Electronies

Tempe, Arizona 5257, and Research Instinue of

Elecrromies, Shiznoka Universiry, Hamamatsi 432-801 1, Japen
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Figure 2. (a—b) Simultaneously measured conductance and force curves during individual stretching processes (stretching rate 40 nm/
sec.) for 4T1DT in toluene solution. (¢c—d) Conductance histograms of 4T1DT (c) and 3T1DT (d) constructed using ~500 such curves as
shown in a and b. (e—f) Breakdown force histograms of 4T1DT (c¢) and 3TIDT (d) constructed using ~500 such curves as shown in a and
b. (g) -V characteristic curves of 3T1DT and 4TIDT.
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Figure 3. (a) Cyclic voltammograms of 3T1DT (black line) and
4TIDT (blue line) adsorbed on a gold electrode in 0.1 M HCIO,.
The potential sweep rate is 0.2 V/sec. The arrows point to the
reduction and reoxidation peaks of the two redox processes. For
comparison, the voltammogram of a bare gold electrode is also
shown (dashed line). Inset of (a) UV—vis spectroscopy of 3T1DT
and 4T1DT molecules. (b) Conductance histograms of the 4TI1DT
molecule conductance in 0.1 M NaClOj at different gate voltages.
(c) Source—drain current vs gate voltage for single 3TIDT and
4T1DT molecules obtained by recording the source —drain current
while sweeping the gate voltage in 0.1 M NaClO..
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Thermoelectricity in
Molecular Junctions
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Rectification and stability of a single molecular

diode with controlled orientation
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tunnelling by means of space and conduction. respectively. through the Figure 4 | Current-voltage (I-V) curves for the symmetric and non-symmetric molecules. a,b, The /-V curves were recorded in both regions A (gap
g by P " P! ! iz g junction, black) and B (single-molecule junction, red) of Fig. 3 for the symmetric tetraphenyl (a) and the non-symmetric dipyrimidinyl-dipheny! (b)
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Conductance of a Single Conjugated
Polymer as a Continuous Function
of Its Length

Leif Lafferentz,® Francisco Ample,2 Hao Yu,? Stefan Hecht,? Christian Joachim,? Leonhard G
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Fig. 3. Conductance as a function of the length of the molecular wire. Experimental (A) and calculated (C)
G(2) curves (equally scaled), both exhibiting characteristic oscillations with a period of z, (the decay of a
vacuum gap is plotted for comparison). The experimental curve is composed of two data sets from
measurements below and above about 20 A, respectively, using different setups and thus ranges for current
detection (each about four orders of magnitude). (B) /-V curves (of single wires and thus not averaged) at
three tip-surface distances (2, 3, and 4 nm). (D) Schematic views of characteristic conformations during
the pulling process, just before the detachment of another molecular unit (z; = 10.2 A,z,=17.2 A, and

z3 = 25.2 A). The inset in (C) shows a sketch with the characteristic parameters z, L, and @.

Science, 323, 1193, 20009.
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Surveying Molecular Vibrations during the
Formation of Metal—Molecule Nanocontacts

Lucia Vitali,*'" Robin Ohmann," and Klaus Kern'*
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Highly Conductive Molecular Junctions Based on Direct Binding of Benzene

to Platinum Electrodes
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One-Way Optoelectronic Switching of Photochromic Molecules on Gold

Diana Dulic’,] S.J. van der Molen,l T Kudernac,2 HT Jonkman,3 J.J.D. de Jong,2 T. N. Bowden,2
J. van Esch,” B. L. Feringa,2 and B.J. van Wees'
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FIG. 3 (color online). MCBJ results. (a) Typical IV of the
connected molecule in the closed form and (b) resistance
versus time. At +=0 a lamp is turned on (A = 546 nm).
After approximately 20 s a clear jump is observed (1 V bias).
(c) Typical IV of the molecule after switching. The line is a fit
to the Stratton formula (for details see text).
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Electronic Transport in Single Molecule

Junctions: Control of the

Molecule-Electrode Coupling through
Intramolecular Tunneling Barriers
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Nicolai Stuhr-Hansen,t Kasper Moth-Poulsen,t and Thomas Bjornholm*t
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Single-electron transistor of
a single organic molecule with
access to several redox states
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Observation of molecular orbital gating Nature 462, 1039, 2009.

Hyunwook Song'”, Youngsang Kim't, Yun Hee Jang’, Heejun Jeong’, Mark A. Reed’ & Takhee Lee'”

-03

b T T T T
_8 -
10
-12
o -14F
2
=4
-16
18
20+
_ 1 1 1
2 10 20 30
1V (V)
d D B
eV D e\/l D
O O
S S
s 14 C A
> eV D eV D
(=] (]
S S
din(i/V3)/d(1/V)
I 1 1 L 1 L i . o 48
32 -28 -24 20 -16 -12 08 -06 -04 -02 025
Vs (V) eV g1 (€V)

Figure 1| Gate-controlled charge transport characteristics of a Au-ODT-
Au junction. a, Representative I(V) curves measured at 4.2 K for different
values of V. Inset, the device structure and schematic. S, source; D, drain; G,
gate. Scale bar, 100 nm. b, Fowler—Nordheim plots corresponding to the I(V)
curves in a, exhibiting the transition from direct to Fowler-Nordheim
tunnelling with a clear gate dependence. The plots are offset vertically for
clarity. The arrows indicate the boundaries between transport regimes
(corresponding to Vi,,,..). ¢, Linear scaling of V., in terms of V;. The error
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Figure 3 | Gated IET spectra and linewidth broadening of a Au-ODT-Au
junction. a, IET spectra measured at 4.2 K for different values of eV ¢, with
vibration modes assigned. b, Two-dimensional colour map of the gated IET
spectra, indicating near independence with respect to eV . ¢, d, Full-
width at half-maximum (FWHM) of the peak corresponding to the v(C-H)
stretching mode (~357 mV) as a function of a.c. modulation voltage (¢) and

temperature (d). The circles indicate experimental data, and the solid line
(c) and squares (d) show theoretical values. The error bars are determined by
the Gaussian fitting. Insets, successive [ET spectroscopy scans for the
v(C-H) mode under increasing a.c. modulation voltage (¢) and increasing
temperature (d), as indicated. r.m.s., root mean squared.
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Figure 2 | Gate-controlled charge transport characteristics of a Au-BDT-
Au junction. a, Representative I(V) curves measured at 4.2 K for different
values of V. b, Fowler—-Nordheim plots demonstrating the gate-variable
transition from direct to Fowler—Nordheim tunnelling (colour-coded as in
a). The plots are offset vertically for clarity. Also shown are drawings of the

barrier shape with increasing bias. ¢, Plot of Vi, versus V. The solid line is
alinear fit and the error bars denote the s.d. of the individual measurements.
Inset, the colour map of dIn(I/V*)/d(1/V) (from Fowler-Nordheim plots)
with linear fit (solid line) obtained from the plot of Vi, versus V. The
zero-gate transition voltage is indicated by the dashed arrow.

Nature 462, 1039, 20009.
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Figure 4 | Resonantly enhanced IET spectra of a Au-BDT-Au junction.

a, IET spectra measured at 4.2 K for different values of eV; .4, with vibration
modes assigned. The left-hand y axis corresponds to the grey shaded region
of the spectra, and the various right-hand y axes (with different scales)
correspond to the related (colour-coded) spectra in the non-shaded region.
The vertical dotted line corresponds to V=45mV (363 cm . Significant
modification in the spectral intensity and line shape for the benzene ring
modes, y(C-H), v(18a) and v(8a), was observed for different values of
eV e as indicated. Insets, energy diagrams illustrating inelastic tunnelling

as the position of the HOMO resonance shifts as a result of gating. b, Two-
dimensional colour map of the gated IET spectra, showing that IET
spectroscopy intensity and line shape vary significantly as functions of
eVg.eir- €, The relative change, 1, in the normalized conductance for the
v(18a) mode as a function of eV(; . The circles show the experimental data
and the solid curve represents the theoretical fit calculated from

equation (1). Inset, the gate-variable IET spectra for the v(18a) mode,
simulated using equation (1). a.u., arbitrary units.
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The Kondo Effect in the Presence
of Ferromagnetism

Abhay N. Pasupathy,1 Radoslaw C. Bialczak,’ Jan Martinek,?
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Fig. 1. (A) Kondo sig-  g5/A  Au-C,-Au Ni-Ni
nal for C,, with Au
electrodes at T = 1.5
K. At B = 0 (red line),
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Scanning electron
micrograph of a Ni

break junction. The g5
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Close-up of the junction region after electromigration. (C) Tunneling magnetoresistance near V = 0
at T = 4.2 K of a Ni contact after electromigration, with no C,, molecule present.
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Reversible and Controllable Switching of a
Single-Molecule Junction**

Emanuel Lortscher, Jacob W. Ciszek, James Tour, and
Heike Riel*
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Figure 3. Several repeated switching cycles of the BPDN-DT: If the
voltage applied to the metal-BPDN-DT-metal junction exceeds a cer-
tain positive threshold value (Vs,ich 00, the system switches from
the initial “off” state to the “on” state. This state is maintained when
operating only at voltages above Vs pos. A Negative voltage sweep
or a pulse below the negative threshold value (Vsyiwcnneg) resets the
molecule again to the initial “off” state.

small, 2, 973, 2006.
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Oligoaryl Cruciform Structures as Model Compounds for
Coordination-Induced Single-Molecule Switches

Sergio Grunder,!? Roman Huber,”! Songmei Wu,!” Christian Schonenberger,!"!
Michel Calame,*"! and Marcel Mayor*!2-<l
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Figure 2. Measured trend in the conductivity of the OPV and OPE
rods with terminal sulfur or pyridine anchor groups.
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Figure 1. Coordination-induced switching principle: the coordina-
tion of the better conducting terminally pyridine-functionalized bar
subunit to both electrodes is controlled by the electrochemical po-
tential applied with respect to a reference electrode. Upon coordi-
nation (ON-state) the potential between both electrodes triggers
electron transport through the bar subunit.
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FIGURE 1. (a) Schematic device lay-out and artistic impression of a ([Mn(terpy-O-(CH,)s-SAc),)]*") molecule bo!
The asymmetric geometry illustrates a likely realization of the device which gives rise to asymmetric coupling to:
and the difference in gate-coupling to the two ligand moieties that is implied by our transport data. (b) Fabricz
the small gold wire in the middle by electromigration. The junction is fabricated on top of an aluminum gate el
air to form a 2—4 nm thick Al,O; layer, and at low temperatures substantial leakage currents are typically obse
Bridges are electromigrated in the molecule solution at room temperature by ramping a voltage until a decrease in
upon which the applied voltage is returned to 100 mV; the cycle is repeated until a target resistance of £
electromigrated bridges are then left in the molecule solution for about one hour to allow for molecular self-ass¢
the constricted gold wire. Last, the sample space is evacuated and the cooling procedure to 1.7 K starts. (c)
configurations of the Mn*" core with respectively low, and high spin are given. The d-orbitals on the Mn atom are s
ligand field of the organic terpyridine cage into three (lower) t,4 orbitals and two (upper) ey orbitals. (d) Molec
0-(CH,)-SAC))]*7). The derivative has CH, alkane chains attached to the ligands and acetyl protected thiol en

sith tha #ald Alantendan

Vg (V)

FIGURE 2. (a) Density plot of the differential conductance, dI/dV,
versus V and Vg at T = 1.7 K. The different charge states of
respectively the main molecule and the molecule in parallel are
indicated by (i,j) with i = 1,2 and j = I, II, IIl. The molecule in parallel
gives rise to two very similar white crosses of high conductance due
to sequential tunnelling (black dotted lines). The main molecule
displays only a single cross (red dotted lines) corresponding to
sequential tunnelling, which is strongly perturbed due to its very
strong coupling to one, but not the other electrode, and due to the
spin-blockade hindering ground state to ground state transport at
low-bias. Solid red lines trace out the inelastic cotunneling edges
due to virtual tunnelling processes in and out of charge state (2).
Black areas at the top right of the figure are due to saturation of the
current amplifier. (b) Low bias zoom-in of the different crossings
and charge states without any guides to the eye.
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FIGURE 3. (a) Gray scale plot of dI’/dV® as a function of V and 1
of the dI/dV which was measured with a lock-in technique. V
low-bias features; resonances in the first derivative appear as d
superimposed on the plot at the diamond edge locations as a g1
the important low bias features observed in (a); (bottom) ener
in charge state (2). The energy splitting between S and T is giver
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FIGURE 4. (a) Phase-diagram demarcating the regions for which the ground state of the N = 6 electron system is respectively a spin singlet (green)
or a spin triplet (purple). The control parameters on the axes represent the energy levels of the relevant ligand states that hybridize with the Mn
d-electrons. Because of the strongly asymmetric device geometry, all but the terpyridine moiety lying away from the leads will be screened by the
nearby metallic lead and therefore the ligand level of this central terpyridine (ligand 2) feels the gate potential more strongly. Increasing V, therefore
lowers the energy of ligand 2 (¢, following the black arrow) and the ground state eventually changes from singlet to triplet as observed when moving
away from the diagonal (¢, = &) in Figure 3a,b. (b) The phase diagram in (a) is calculated from an exact diagonalization that reveals a simple
understanding in terms of the 6-particle states shown here. Upper (lower) state is a spin singlet (triplet) and the singlet is the ground state at the
point in parameter space corresponding to the white dot in panel (a). (c) Same as (b), except that £, has now been moved down to the location of
the orange dot in panel (a) and the triplet has become the ground state. As indicated by their numerical coefficients, these states dominate the
exact eigenstates and they allow for a simple interpretation of the cause of the gate-dependent singlet—triplet splitting: Basically the triplet is stabilized
by charge fluctuations between the d, and the ligand orbitals since it gains more from the Hund'’s rule coupling on the Mn-core (cf. Section S6 of the
Supporting Information for more details). Increasing the gate-voltage lowers ¢, and, as reflected in the different numerical coefficients, more weight
is put on the component with a doubly charged ligand 2, that is, the component where the triplet is lowered more in energy from Hund’s rule
coupling Parameters for this plot were chosen to be U= 5.0, ¢" + 4U= 0, K = 0.8, A= 2.0, t = 0.26 and t' = 0.1, all in units of eV.

-

of (b); (bottom) energy diagram with Zeeman splitting of the triplet states. Arrows indicate all observed transitions in charge state (2, I— lll)
The vertical dashed line locates the S-T-; crossing; as indicated on the top part, the singlet (triplet) is the ground state at the left (right) side
of this line. (e) Squares: gate voltage value of the S—T_, crossing, V¢, for four different magnetic fields. Red line gives the predicted gate
voltages of the S—T-; crossing, using the energy diagram presented in (d), as a function of magnetic field. (f) Gray scale plot of dI/dV vs B-field
showing a Zeeman splitting of the Kondo resonance at Vg = —2.8 V. From the splitting at B = 10 T, we estimate a g-factor of g = 1.9 = 0.3.



