
Superlattices and Microstructures 48 (2010) 31–40

Contents lists available at ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Spin-flip effects in a parallel-coupled double quantum
dot molecule
X.F. Yang a,b, Y.S. Liu a,b,∗
a Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China
b College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500, China

a r t i c l e i n f o

Article history:
Received 15 January 2010
Received in revised form
19 April 2010
Accepted 21 April 2010
Available online 21 May 2010

Keywords:
Spin-flip effects
Quantum dots
Fano effects

a b s t r a c t

We investigate theoretically the electronic transport through a
parallel-coupled double quantum dot (DQD) molecule attached
to metallic electrodes, in which the spin-flip scattering on each
quantum dot is considered. Special attention is paid to the effects
of the intradot spin-flip processes on the linear conductance by
using the equation of motion approach for Green’s functions.
When a weak spin-flip scattering on each quantum dot is
present, the single Fano peak splits into two Fano peaks, and the
Breit–Wigner resonance may be suppressed slightly. When the
spin-flip scattering strength on each quantum dot becomes strong,
the linear conductance spectrum consists of two Breit–Wigner
peaks and two Fano peaks due to the quantum interference effects.
The positions and shapes of these resonant peaks can be controlled
by using the magnetic flux through the quantum device.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to the rapid development in the nanofabrication of quantum devices, electronic transport
through mesoscopic quantum dots has been an interesting subject of experimental and theoretical
works in the past decades [1–4]. In particular, two coupled quantum dots often form an artificial
molecular system, which can be connected to the source and drain electrodes in either series
or parallel configurations for studying the transport properties. Holleitner et al. [5] presented a
quantum device with two coupled quantum dots embedded in an Aharonov–Bohm ring, and a flux-
periodic current was detected in the case of the weakly coupled quantum dots. More recently,
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extensive theoretical works on electronic transport through a DQD molecule connected in a parallel
configuration to the metallic electrodes have been reported [6–11]. As a consequence of the quantum
interference effects, a Breit–Wigner peak and a Fano peak appear in the linear conductance spectrum.
The positions and widths of the two resonant peaks can be controlled by tuning the magnetic flux
through the quantum device.
When the spin–orbit interaction on the quantum dot is taken into account, the spin rotation of an

electron may happen. Some interesting quantum phenomena in the transport properties of quantum
dot systems may be observed; for example, the single Kondo resonant peak splits into a two-peak
or three-peak structure when the spin-flip scattering strength on the quantum dot is comparable
with the Kondo temperature for a single quantum dot [12]. Cao et al. [13] studied the spin-dependent
transport through a single quantum dot connected to a ferromagnet and a superconductor, where
the spin-flip scattering on the quantum dot was included. The results showed that a single Andreev
reflection (AR) conductance peak was developed when a weak spin-flip scattering was present. With
the spin-flip scattering strength increasing, the single AR conductance peak developed into a double-
peak structure in the conductance spectrum. Li et al. [14] studied the spin-dependent AR conductance
tunneling through a T-shaped quantumdot sandwiched between a ferromagnet and a superconductor
within the nonequilibrium Green’s function, and the same intradot spin-flip scattering strength on
each quantum dot was considered. The results of the study showed that the number of resonance
peaks of the AR conductance increased, and the height of the AR conductance peaks was suppressed
with the spin-flip scattering strength increasing.
In recent years, many theoretical suggestions have been proposed for the implementation of

quantum dot systems in quantum computation and quantum information domains [15,16]. In
particular, a quantum controlled-NOT (CNOT) gate was proposed by using the electron orbital states
in a double coupled quantum dot system [17–19]. The reason is that the double coupled quantum
dots often produce bonding and antibonding molecular states due to the interdot tunneling coupling
like a molecule with two atoms. In this paper, we investigate theoretically the linear conductance
of a parallel-coupled DQD molecule attached to metallic electrodes by using the equation of motion
approach for Green’s functions, where the same intradot spin-flip scattering strength is present.
We mainly focus on the effect of spin-flip scattering in the DQD on the linear conductance at zero
temperature. When a weak spin-flip scattering on each quantum dot is present, the single Fano
peak splits into two Fano peaks, and the Breit–Wigner peak is suppressed slightly. Once the spin-
flip scattering on each quantum dot becomes strong, the linear conductance spectrum consists of two
Breit–Wigner peaks and two Fano peaks due to the quantum interference effects.

2. Model and method

The quantum device under consideration is shown in Fig. 1, in which only one electron energy
level inside each quantum dot is considered due to the small size of the quantum dots. The spin-
flip scattering on each quantum dot is included in the quantum model. We neglect the interdot and
intradot electron–electron interactions in the quantum dot system, and the assumption is reasonable
because the Coulomb energies are one order of the magnitude bigger than the coupling between
the quantum dots and the metallic electrodes [20]. The magnetic flux Φ is applied perpendicular
to the quantum device, which induces the phase-shift between the electron waves propagating
in the clockwise and anticlockwise directions. The total Hamiltonian of the parallel-coupled DQD
interferometer can be written as

H = Hleads + Hcenter + HT . (1)

The first term (Hleads) in Eq. (1), describing the left and right metallic electrodes in the noninteracting
electron approximation, has the following expression:

Hleads =
∑

α=L,R; kσ

εαkσ a
Ď
αkσ aαkσ , (2)

where aĎαkσ (aαkσ ) denotes the creation (annihilation) operator for an electron with energy εαkσ and
spin index σ in the electrode α. The second term in Eq. (1) describes the dynamics of the double
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Fig. 1. Schematic plot of a parallel-coupled double quantum dot system with interdot tunneling tc attached to the metallic
electrodes. Γ α

jσ (j = 1, 2;α = L, R; σ =↑,↓) is the tunneling coupling between the jth quantum dot and the metallic
electrode α.

coupled quantum dots in the center region, which can be modeled by a noninteracting two-site
Anderson Hamiltonian,

Hcenter =
∑
jσ

εjd
Ď
jσdjσ −

∑
σ

tc(d
Ď
1σd2σ + h.c.)− R

2∑
j=1

(dĎj↑dj↓ + h.c.), (3)

where Rdenotes the spin-flip scattering strength on each quantumdot, and dĎjσ (djσ ) creates (destroys)
an electron with the energy εj and spin index σ in the jth quantum dot. tc is the interdot coupling
strength between two quantum dots. The third term in Eq. (1) represents the tunneling coupling
between two quantum dots and the metallic electrodes, which is divided into two parts,

HT = HLT + H
R
T . (4)

HαT , describing the tunneling coupling between the center region and the electrode α, is written as

HαT =
∑
k,σ ,α

[(Vα1σd
Ď
1σ + Vα2σd

Ď
2σ )aαkσ + h.c], (5)

where the tunneling matrix element Vαjσ (j = 1, 2) is assumed to be independent of k, and it can
be written as VL1σ = |VL1σ |eiφ/4, VL2σ = |VL2σ |e−iφ/4, VR1σ = |VR1σ |e−iφ/4, VR2σ = |VR2σ |eiφ/4, with
the AB phase φ = 2πΦ/Φ0 and the flux quantum Φ0 = h/e. Φ can be calculated by the formula
Φ = B ·S, where B is themagnetic field and S is the corresponding area of the quantum ring consisting
of the double quantumdots andmetallic electrodes. The value Smay be obtained in the previouswell-
known experimental work, and it is 2.52× 10−13 m2 [5]. So the magnitude of the magnetic field B is
16.4 mT for φ = 2π . The linewidth matrices 0L and 0R are given by

0L =


Γ L1↑ 0

√
Γ L1↑Γ

L
2↑e

iφ/2 0

0 Γ L1↓ 0
√
Γ L1↓Γ

L
2↓e

iφ/2√
Γ L1↑Γ

L
2↑e
−iφ/2 0 Γ L2↑ 0

0
√
Γ L1↓Γ

L
2↓e
−iφ/2 0 Γ L2↓

 , (6)

and

0R =


Γ R1↑ 0

√
Γ R1↑Γ

R
2↑e
−iφ/2 0

0 Γ R1↓ 0
√
Γ R1↓Γ

R
2↓e
−iφ/2√

Γ R1↑Γ
R
2↑e

iφ/2 0 Γ R2↑ 0

0
√
Γ R1↓Γ

R
2↓e

iφ/2 0 Γ R2↓

 , (7)

with the linewidth matrix Γ α
jσ =

∑
k |Vαjσ |

22πδ(ε − εαkσ ) (α = L, R; j = 1, 2; σ =↑,↓).
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The linear conductance σ is related to the total transmission τ(ε) by the following formula at zero
temperature [21]:

σ =
e2

h
τ(ε) =

e2

h
Tr[0LGr0RGa]. (8)

In order to obtain the linear conductance σ , we need use the equation of motion approach for the
retarded Green’s function Gr(ε), which is the Fourier transform of the retarded Green’s function
Gr(t − t ′),

Gr(t − t ′) = −iθ(t − t ′)〈{Ψ (t),Ψ Ď(t ′)}〉, (9)

where the quantum operator Ψ Ď
= (d1↑, d1↓, d2↑, d2↓)Ď. g r is defined as the Fourier-transformed

retarded Green’s function of the center region without the coupling to twometallic electrodes, which
is written as

[g r(ε)]−1 =

ε − ε1 + i0
+ R tc 0

R ε − ε1 + i0+ 0 tc
tc 0 ε − ε2 + i0+ R
0 tc R ε − ε2 + i0+

 . (10)

By employing the matrix Dyson’s equation, the retarded Green’s function Gr(ε) can be written as

Gr(ε) = {[g r(ε)]−1 − 6r(ε)}−1, (11)

where 6r(ε) is the retarded self-energy matrix from the tunneling coupling between the DQD
molecule and two metallic electrodes. Under the wide-bandwidth approximation, one can obtain the
relation 6r = − i2 (0

L
+ 0R).

Once the retarded Green’s function is obtained, the advanced Green’s function can be obtained
by the relation Ga(ε) = [Gr(ε)]+. The total local density of states (LDOS) is calculated by using the
diagonal matrix elements of the retarded Green’s function ρ = − 1

π

∑4
j=1 Im Grjj(ε).

3. Results and discussions

The results and discussions of the present studies will be presented in this section. For simplicity, a
perfectly symmetrical system with parameters Γ α

jσ = Γ0(α = L, R; j = 1, 2; σ =↑,↓) is chosen
in this paper. For many practical systems, Γ0 is the order of meV [22,23], while in this work we
concentrate on the spin-flip scattering in the DQD at zero temperature so that Γ0 is set to be the
reference unit of energy. When the spin-flip scattering on each quantum dot is ignored, such a
quantum model has been studied extensively in numerous previous literatures [6–11]. In the case
of no magnetic flux through the quantum device, the width of the Fano resonance becomes zero.
The reason is that the antibonding state is decoupled from the two metallic electrodes due to the
destructive quantum interference [8,9]. Once the magnetic field is switched on, the Fano peak will
come back. In this paper, we will focus on the effects of the spin-flip on the linear conductance in a
parallel-coupled double quantum dot Aharonov–Bohm interferometer at zero temperature.
We first study the transport properties of a parallel-coupled double quantum dot Aharonov–Bohm

interferometer under weak spin-flip scattering strengths (R � Γ0); the linear conductance can be
obtained by the Landauer formula (Eq. (8)). In the upper plane in Fig. 2, we plot the linear conductance
σ as a function of the Fermi energy EF under several different values of theweaker spin-flip scattering.
For simplification, the system parameters for the numerical calculations are assumed as ε1 = ε2 =
ε0 = Γ0, tc = Γ0 and φ = 0.3π , respectively. Due to the interdot tunneling coupling tc and spin-
flip scattering R, four coherent molecular states are developed at energies ε0 − tc − R, ε0 − tc + R,
ε0+ tc−R, and ε0+ tc+R, respectively. In particular, when R = 0, the linear conductance spectrum is
composed of one Breit–Wigner peak located around ε0− tc and one Fano peak located around ε0+ tc ,
as shown in the upper plane of Fig. 2 (see the solid line) [9]. In this case, the linear conductance σ in
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Fig. 2. (Color online) Linear conductance σ and LDOS ρ as functions of the Fermi energy EF for different values of the weak
spin-flip scattering R. The system parameters are chosen as ε1 = ε2 = ε0 = Γ0 , φ = 0.3π and tc = Γ0 , respectively.

the Breit–Wigner region can be approximated as

σ '
2e2

h
1

e2+ + 1
, (12)

and the linear conductance σ in the Fano-like region has the following approximate expression:

σ '
2e2

h
Tb
(q+ e−)2

e2− + 1
, (13)

where e± = (EF−ε0±tc)/Γ±withΓ± = Γ0[1±cos(φ/2)], Tb = 1/(1+q2), and q = −2tc/Γ+. In this
paper,we aremainly interested in the dependence of the linear conductance on the spin-flip scattering
strengths on each quantum dot. When the weaker spin-flip scattering is present, the single Fano peak
develops into a double-peak structure, and the positions of the two Fano peaks are located around
ε0 + tc ± R (see the upper plane of Fig. 2). The reason for this is that the quantum state giving rise to
the Fano peak is a weakly coupled electronic state, and it is more sensitive to the spin-flip scattering
strength. With the spin-flip scattering increasing, the two small Fano peaks move in the opposite
directions, and the height of the Breit–Wigner peak is suppressed slightly. There is no double-peak
structure appearing around ε0 − tc in the linear conductance spectrum due to the strongly coupled
electronic state corresponding to the Breit–Wigner resonance. In order to interpret the numerical
results, the corresponding LDOS as a function of the Fermi energy is plotted in the bottom plane of
Fig. 2.We find that the total LDOS peak around ε0+ tc splits into two LDOS peaks, while the LDOS peak
around ε0 − tc is suppressed slightly. As a result, the single Fano-like peak splits into two Fano-like
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Fig. 3. (Color online) Linear conductance σ (black solid line) and LDOS ρ (red dashed line) as functions of the Fermi energy EF
for strong spin-flip scattering R = 5Γ0 . The other system parameters are chosen as those in Fig. 2.

peaks in the presence of weak spin-flip scattering, while the Breit–Wigner resonance is suppressed
slightly.
Nowwebeginwith the study of the effects of strong spin-flip scattering on the transport properties

of a double quantumdot Aharonov–Bohm interferometer. The linear conductance σ (the left axis) and
the total LDOS ρ (the right axis) as functions of the Fermi energy with the strong spin-flip scattering
on each quantum dot are illustrated in Fig. 3. The spin-flip scattering is taken as R = 5Γ0, and the
other system parameters are chosen as those in Fig. 2. The results show that two wider LDOS peaks
appear around ε0 − tc ± R, which give rise to two Breit–Wigner peaks in the conductance spectrum.
Two narrow LDOS peaks are located in the vicinity of the energies ε0+ tc ± R, which induce two Fano
peaks in the conductance spectrum. The reason is that quantum interference effects happen when
electron transport takes place through weakly coupled electronic states at energies ε0 + tc ± R and
strongly coupled electronic states at energies ε0 − tc ± R.
The periodic oscillation of the linear conductance as a function of the magnetic flux is an

important phenomenonwhen the phase coherence of electrons in a parallel-coupled double quantum
dot Aharonov–Bohm interferometer is preserved. In Fig. 4, we plot the dependence of the linear
conductance σ on the magnetic flux φ. The upper plane shows σ versus the Fermi energy EF and the
magnetic flux φ. The spin-flip scattering R is chosen as 7Γ0, and other system parameters are taken
as those in Fig. 2. We note that the linear conductance is a periodic function of φ with a period of 4π ,
which is readily explained by the different electron-transmission pathways [6]. It is interesting to note
that the two Breit–Wigner peaks and two Fano peaks can be interchanged by tuning themagnetic flux
φ. In particular, we plot the linear conductance σ as a function of EF for the magnetic flux φ = 0.3π
and 1.7π in the bottom plane of Fig. 4. The two Breit–Wigner peaks evolve into two Fano peaks, while
the two Fano peaks develop into two Breit–Wigner peaks when the magnetic flux varies from 0.3π
to 1.7π . Such a swap effect among four molecular states in a parallel-coupled double quantum dot
Aharonov–Bohm interferometer with strong spin-flip scattering may be applied to future quantum
computation.
The dependence of the linear conductance σ on the Fermi energy EF in the absence of the interdot

tunneling coupling tc = 0 is shown in Fig. 5, and other system parameters are chosen as in Fig. 2.
The linear conductance σ as a function of the Fermi energy EF is plotted in the upper plane for several
different values of the spin-flip scattering R. When R = 0, the linear conductance has the following
expression:

σ(EF , φ) =
2e2

h
4Γ 20 (EF − ε0)

2 cos2( φ2 )

[(EF − ε0)2 − Γ 20 sin
2(φ/2)]2 + 4Γ 20 (EF − ε0)2

. (14)
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Fig. 4. (Color online) Upper plane: linear conductance σ as a function of the Fermi energy EF and magnetic flux φ. Lower
plane: linear conductance σ as a function of the Fermi energy EF for different magnetic fluxes φ. The other system parameters
are chosen as those in Fig. 2.

From the above equation, we can see clearly that the zero conductance point appears at the energy
ε0 due to the destructive quantum interference effect, and there are two resonant peaks located at
ε0±Γ0 sin(φ/2) (see the solid line in the upper plane of Fig. 5).When the spin-flip scattering is present,
the zero conductance point at the energy ε0 disappears, and two new conductance dips appear at
energies ε0 − R and ε0 + R in the linear conductance spectrum due to spin-flip scattering strength
on each quantum dot, and four resonant peaks appear at around ε0 ± R ± Γ0 sin(φ/2). We also plot
the linear conductance σ as a function of the Fermi energy EF in the lower plane for different values
of the magnetic flux. The height of the linear conductance σ is suppressed with the increasing of the
magnetic flux due to σ ∝ cos2( φ2 ) even in the presence of spin-flip scattering on each quantum dot,
and the linear conductance disappears when φ = π .
Finally, we plot the linear conductance σ and LDOS ρ as functions of the quantum dot energy

levels ε1 and ε2 with the fixed spin-flip scattering R = 5Γ0 in Fig. 6. Here the interdot tunneling is
absent, and the quantum dot level can be tuned experimentally by using the voltage applied on the
quantum dot. The magnetic flux through the quantum device is chosen to be φ = 0. When R = 0, the
quantum dot system is the same as the system proposed in the previous work [6]. In the following
calculation, the Fermi energy is fixed at the zero of energy. The results show that quantum dot levels
and spin-flip scattering can significantly influence the transport properties of a double quantum dot
Aharonov–Bohm interferometer. The linear conductance is symmetrical on the line ε1 = ε2, and
two perfect tunneling channels with linear conductance approaching 2e2/h are opened in the points
(5Γ0,−5Γ0) and (−5Γ0, 5Γ0), as shown in the upper plane of Fig. 6. The numerical results can be
explained by the following analytical expressions. When ε1 = R, the linear conductance σ can be
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Fig. 5. (Color online) Linear conductanceσ as a function of the Fermi energy EF in the absence of the interdot tunneling coupling
tc = 0. The upper plane corresponds to several different values of spin-flip scattering R, and the lower plane represents the
case with several different magnetic fluxes φ.

written as

σ(ε2) =
2e2

h
2R2(ε2 + R)2 + (ε2 + 3R)2Γ 20
4R2(ε2 + R)2 + (ε2 + 3R)2Γ 20

. (15)

The above equation shows clearly that the linear conductance has a resonance peak with σ = 2e2/h
at ε2 = −R such that a perfect tunneling channel is opened at the point (R,−R), and the other perfect
tunneling channel can be found at the point (−R, R). We also find that Fano-line-shape resonances
appear in the vicinity of points (−R,−R) and (R, R) due to quantum interference effects (see the upper
plane of Fig. 6), and the physical reason for this is that the corresponding high-LDOS peaks appear in
the vicinity of points (−R,−R) and (R, R) as shown in the lower plane of Fig. 6.

4. Summary

In summary, we have investigated theoretically the linear conductance properties of a parallel-
coupledDQDmolecule sandwiched between twometallic electrodes at zero temperature based on the
equation of motion approach for Green’s functions, in which the intradot spin-flip scattering on each
quantumdot has been taken into account.We focus on the effects of the intradot spin-flip processes on
the transport properties. When a weak spin-flip scattering on each quantum dot is present, the single
Fano peak splits into two peaks, and the Breit–Wigner peak is suppressed slightly. When strong spin-
flip scattering on each dot is present, the linear conductance spectrum may be decomposed into two
Breit–Wigner peaks and two Fano peaks due to quantum interference effects. A swap effect among the
four molecular states is also found by controlling the magnetic flux threading through the quantum
device.
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