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Nuclear Spin Noise and STM Noise Spectroscopy

A. V. Balatsky,1, ∗ J. Fransson,2, 3, † D. Mozyrsky,1, ‡ and Yishay Manassen4, §

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Materials Science and Engineering,

Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
3Physics Department, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden

4Department of Physics and the Ilse Katz Center for Nanometer Scale Science and Technology,
Ben Gurion University, Beer Sheva, 84105, Israel

We consider fluctuations of the electronic spin due to coupling to nuclear spin. Noise spectroscopy
of an electronic spin can be revealed in the Scanning Tunnelling Microscope (STM). We argue that
the noise spectroscopy of electronic spin can reveal the nuclear spin dynamics due to hyperfine
coupling. Tunnelling current develops satellites of the main lines at Larmor frequency and at zero
frequency due to hyperfine coupling. We also address the role of the rf field that is at or near the
resonance with the nuclear hyperfine field. This approach is similar to Electron Nuclear Double
Resonance (ENDOR), in that is allows one to detect nuclear spin dynamics indirectly through its
effect on electronic spin.
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I. INTRODUCTION

Noise spectroscopy is a technique that allows one to
measure spectroscopic properties by observing nontrivial
features in the noise. The main feature of noise spec-
troscopy is that the noise spectrum has encoded in it
spectroscopic features that correspond to physical exci-
tations in the system, such as atomic levels, Zeeman split
levels of electrons or nuclear levels. The transition be-
tween levels would cause enhanced dissipation when the
energy transferred equals the energy difference between
those levels. This enhanced dissipation also would imply
enhanced fluctuations at the same frequencies/energies,
as follows from the fluctuation-dissipation theorem. Ex-
periments that prove utility of the noise are available
from many fields. An incomplete list includes nuclear
spin noise,1 Faraday rotation noise in the alkali atoms,2–4

and acoustic noise.5 Recently noise spectroscopy was
used to detect a single electronic spin with Magnetic Res-
onance Force Microscopy by an IBM group.6

Therefore, in principle, noise measurement could be a
powerful tool to investigate the dynamics of the system.
Sometimes noise is easier to measure and then noise spec-
troscopy could be even a preferred technique to investi-
gate nano-scale systems.3,6

One example of the noise spectroscopy relevant for us
here is Electronic Spin Resonance Scanning Tunneling
Microscopy, ESR-STM. ESR-STM is a technique that is
using the extremely local nature of the STM measure-
ment to detect the noisy precession of spin centers on the
nonmagnetic surface. When a tip of an STM is located
above a paramagnetic spin center the tunneling current is
modulated by the precession in the presence of external
field. It was shown7,8 that the ac current at the Larmor
frequency is spatially localized within 0.5 − 1nm. It is
the spatial localization that suggests that this technique
is capable of detecting a single spin. In addition it was
proved that the frequency of the signal is dependent on

real time on the size of the magnetic field.9,10 More re-
cently similar experiments have been done on the param-
agnetic BDPA molecule.11 The interest in this technique
has risen sharply recently, due to the possibility to ma-
nipulate and detect a single spin12,13 and due to the pos-
sibility to use it for quantum computation.12,14 There
have been many proposals for the mechanism of this
phenomenon.13,15–20 Present experiments are not suffi-
cient to constraint possible mechanism and further inves-
tigation would help to elucidate the nature of the effect.

Recently Durkan reported the measurements of the
noise in the ESR-STM on a TEMPO molecule.21 This
molecule is well characterized, and it contains nitrogenN
with the nuclear spin I = 1. ESR spectrum of TEMPO
in the bulk is known to exhibit the hyperfine splitting
on the order of 15 G that corresponds to the free
(ge = 2) electron precession frequency on the order of
45 Mhz. The main new observation that is important in
our context is that the ESR-STM on TEMPO molecule
produced three peaks that possibly corresponds to the
hyperfine split Larmor line in current spectrum. If re-
produced, this observation opens up a new possibilities
in noise spectroscopy in STM.

The purpose of this paper is to consider the case of
coupling of the electronic impurity spin S to nuclear spin
I via hyperfine coupling. We investigate the noise spec-
troscopy of the nuclear spin and coupled electron-nuclear
dynamics as it might be seen in STM experiments. In-
deed all the previous discussions of the mechanisms so far
have focused on the dynamics of the electronic impurity
spin. Hyperfine coupling to the nuclear spin would allow
one to measure dynamics, relaxation times and transi-
tions between the nuclear levels.

We find that the hyperfine coupling produces addi-
tional satellite lines in the noise spectra for the localized
impurity spin that will be split away from Larmor line
by the amount proportional to hyperfine coupling A. We
also consider the case of the rf field at frequency ω ∼ A

http://arXiv.org/abs/cond-mat/0602113v1
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applied to the system. This is the case of Electronic-
Nuclead Double Resonance (ENDOR), where electron
spin dynamics will be affected by the nuclear spin flips
caused by the rf field. In the case of applied rf field we
clearly pump energy into the system and hence measure-
ment is not strictly a noise spectroscopy measurement.
Still this is a set up most likely to be attempted experi-
mentally and this is why we address it here as well.

The plan of the paper is as follows. We address the
localized impurity spin susceptibility with the hyperfine
coupling and the tunneling current modulations in the
Sec.II. We address a few specific cases, such as case of no
rf field and case of no applied fields, neither dc nor ac. In
all of these cases electronic spin will have nontrivial spec-
troscopic features, most notable the hyperfine split lines
around Larmor line and around zero frequency. In Sec
III we conclude with discussion of possible experiments.

II. PROBING THE SPIN SUSCEPTIBILITY VIA

NOISE MEASUREMENT

To be specific, consider the tunneling current between
two contacts in the presence of a localised spin S inter-
acting with a nuclear spin I, I = 1, to make a contact
with the experiments on TEMPO. The Hamiltonian of
this system is written in the form

H = HL + HR + HS +
∑

kpαβ

c†kα[t0 + t1S · σαβ ]cpβ , (1)

where HL(R) =
∑

k(p)σ εk(p)σc
†
k(p)σck(p)σ models free

electrons in the left (right), L(R), lead, whereas

HS = B0S
z +AS · I +B1I

x cosωt+B2S
x cosωt,(2)

B0 ≫ A≫ B1, B2

accounts for the interactions between the localised elec-
tronic and nuclear spins. In the Hamiltonian, Eq. (1),
σαβ denote the Pauli spin matrix vector with matrix in-

dices α, β, the Fermionic c†k(p)σ , ck(p)σ are creation and

J  + δJ(t)
0

V0

S

I

B(t) d

FIG. 1: Sketch of the experimental setup. The tip — surface
separation distance is d. The single magnetic impurity atom
with spin S on the substrate surface interacts with the nuclear
spin I in the substrate.
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FIG. 2: The possible spin-flip transitions that may occur in
the system. The electronic spin-flips give rise to the three
major peaks in the transport current fluctuations spectrum
at the frequencies Ez and Ez ± 2A; see also Fig. 3 and Fig.
4.

annihilation operators of electrons in the kth (pth) eigen-
state in the STM tip (substrate surface), with spin σ =↑
, ↓. For simplicity we have incorporated the electronic
ge and nuclear gyromagnetic ratio gN into the effective
fields B0 = geH0, B1 = gNH1, B2 = geH1 for the exter-
nal dc field H0 and ac field H1 cosωt. The last term in
Eq. (1) describes tunneling of the electrons from the tip
into the substrate surface in the presence of the localised
electronic spin S. This term only give a contribution to
the net steady state current by providing a chemical po-
tential shift (bias voltage drop) between the two bands
{εkσ} and {εpσ}. In real systems, the hopping matrix

elements t̂ = t0 + t1S · σ have a kp− dependence, which
are omitted here in order to make the notation more com-
pact. The wavefunctions of our system are superpositions
of the direct product states |ψL〉 ⊗ |ψS〉 ⊗ |ψR〉, e.g. the
direct product of the state of the STM tip, the impurity
spin, and the substrate surface. The tunneling matrix t̂
in the last term of Eq. (1) couples all of these different
states, of which the term proportional to t0 describes the
spin independent tunneling while the term proportional
to t1 provides the spin dependent contributions arising
from the exchange interaction of tunneling electrons to
the magnetic atom.

Spin dependence of the tunneling arise due to di-
rect exchange dependence of the tunnel barrier.22 The
overlap of the electronic wavefunctions of the tip and
the surface, separated by a disctance d is exponen-
tially small and is given by a spin dependent tunnel-
ing matrix element t̂ = γ exp{−

√

(Φ − JS(t) · σ)/Φ0},
where the direct exchange between the tunneling elec-
tron spin σ and the impurity spin S is explicitly in-
cluded. Here, J is the exchange interaction parame-
ter between the electrons tunneling from the tip to the
surface and the precessing impurity spin S. The tun-
neling barrier height Φ is typically a few eV, whereas
Φ0 = ~

2/(8md2) is related to the distance between the
tip and the surface.23 Since the exchange term in the ex-
ponent is small compared to the barrier height, we may
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expand the exponent in JS, which gives t̂ = t0 + t1S(t) ·
σ. Here, t0 = γ exp (−

√

Φ/Φ0) cosh [JS/(2
√

ΦΦ0)] de-
scribes the spin independent tunneling, while t1 =
γ exp (−

√

Φ/Φ0) sinh [JS/(2
√

ΦΦ0)] accounts for the
spin dependent tunneling amplitude. For estimates we
may employ the typical thumb rule t1/t0 ≈ JS/(2Φ) ≪
1.

We will assume that the tunneling electrons are par-
tially spin polarised. This can be achieved in several
situations. For example, in ferromagnetically coated
tips a potential difference 2δµσ separates the spin bands
εkσ = εk + σδµσ. Ferromagntically ordered tips have
proven successful in the study of magnetic structures.24

Another approach to obtain a spin polarised current is to
use an antiferromagntically coated tip with no ferromag-
netic order.25 Such tips have the benefit of a vanishing
dipolar field and should, therefore, have a negligible influ-
ence on the precession frequency of the impurity spin. A
ferromagnetically ordered tip may produce a field of O(1)
T at a separation of few Ångströms from the surface.
Such fields therefore leads to huge precession frequencies
which are difficult to measure. In what follows, however,
we will not be concerned of how the spin polarised current
is generated. We define a parameter A which relates the
spin polarised current to the net tunneling current. This
is the parameter that will be determined by a particular
microscopic model of the tip. Thus, we will henceforth
treat A as a phenomenological parameter.

For conciseness, we employ the Heisenberg picture for
all operators {O}, i.e. O(t) = exp [iHt]OS exp [−iHt],
with OS = O(t) for operators in the Schrödinger picture.
All finite temperature expectation values 〈O(t)〉 will rep-
resent

∑

i pi〈ψi(0)|O(t)|ψi(0)〉, where ψi(t = 0) is the
zero time wave function from the Schrödinger picture,
whereas pi is its probability within the density matrix
formulation.

Now, for a qualitative description of the effect
addressed here consider the charge current J(t) =
−e∂/∂tNL(t). Since we are considering the steady state
regime it is, by charge and current conservation, sufficient
to consider the current in the tip (or in the substrate)
only. By a direct calculation, using the Heisenberg equa-
tion of motion, we find that

J(t) = −2eIm
∑

kpαβ

〈

c†kα[t0 + t1S(t) · σαβ ]cpβ

〉

, (3)

where e is the electronic charge. Hence, we see that the

tunneling current can be partitioned into a spin inde-

pendent part J0(t) = −2eIm
∑

kpσ t0〈c
†
kσcpσ〉 and a spin

dependent part

δJ(t) = 〈δJ(t)〉 = et1〈S(t) · Js(t)〉, (4)

which depends on the localised moment S(t), where

Js(t) = −i
∑

kpαβ

c†kασαβcpβ +H.c., (5)

is the spin dependent contribution to the tunneling cur-
rent. The z-component of this expression, e.g. Jz

s (t) =

−i∑kp(c
†
k↑cp↑ − c†k↓cp↓) +H.c., describes the net flow of

spin ↑ and spin ↓ carriers, whereas the transversal com-

ponent (Jx
s , J

y
s )(t) = −i

∑

kp(c
†
k↑cp↓ + c†k↓cp↑,−ic

†
k↑cp↓ +

ic†k↓cp↑) + H.c. accounts for spin flip transitions of the
tunneling electrons caused by the interactions with the
precessing impurity spin.

To the lowest order in the tunneling amplitude t1,
the electronic current-current correlation function arising
due to the spin dependent part of the current is given by

〈{δJ(t), δJ(t′)}〉 = (et1)
2〈Si(t)Sj(t′)〉〈J i

s(t)J
j
s (t′)〉

+(t↔ t′), (6)

where 〈{·, ·}〉 denotes the symmetrized correlator whereas
i, j = x, y, z signify the spin components. Thus, to low-
est non-trivial order in t1 we can treat the two tempo-
ral correlation functions Kij(t − t′) = 〈Si(t)Sj(t′)〉 and
C(t− t′) = 〈J i

s(t)J
j
s (t′)〉 → 〈J i

s(t)〉〈Jj
s (t′)〉, (|t− t′| → ∞)

independently. To make a connection with the main pro-
posal of this paper we note that the Fourier transform of
the symmetrized correlation function 〈{δJ(t), δJ(t′)}〉 is
the current noise spectrum at various frequencies arising
from the localised electronic spin. In Fourier space, the
current noise spectrum is given by the convolution of the
two power spectra associated with S and σ, e.g.

〈|δJ(ε)|2〉 =
(et1)

2

2π

∫

Kij(ε′)C(ε − ε′)dε′ + (ε → −ε).
(7)

In order to see the effect of the interactions between
the localised electronic (S) and nuclear (I) spin in the
rotating magnetic field we have to calculate K+−(ε) and
Kz(ε), for which the details are given in the appendix,
see Eqs. (A6) and (A8). The resulting expressions for
the correlation functions are given by



4

K+−(τ) ∼
(

1

4

[

1 + 2
( B1

2ω1

)2
(

1 +
( B1

2ω1

)2
)

+ 5
(∆ω

ω1

)4
]

+
1

4

( B1

2ω1

)2
(

3 −
(∆ω

ω1

)2
)

cosωτ +
3

4

( B1

2ω1

)

cos 2ω1τ

+
1

8

(

1 +
∆ω

ω1

)4

cos(ω + 2ω1)τ +
1

8

(

1 − ∆ω

ω1

)4

cos(ω − 2ω1)τ

+
( B1

2ω1

)2
(

1 − 3
(∆ω

ω1

)2
)

[cos
ωτ

2
− cosω1τ ]

+2
∆ω

ω1

( B1

2ω1

)2
(

1 +
∆ω

ω1

)

cos
ω + 2ω1

2
τ − 2

∆ω

ω1

( B1

2ω1

)2
(

1 − ∆ω

ω1

)

cos
ω − 2ω1

2
τ

+
1

2

( B1

2ω1

)2
(

1 +
∆ω

ω1

)2

cos(ω + ω1)τ +
1

2

( B1

2ω1

)2
(

1 − ∆ω

ω1

)2

cos(ω − ω1)τ

−1

2

( B1

2ω1

)2
(

1 +
∆ω

ω1

)2

cos
ω + 4ω1

2
τ − 1

2

( B1

2ω1

)2
(

1 − ∆ω

ω1

)2

cos
ω − 4ω1

2
τ

)

e−i2B0τ . (8)

and

Kz(τ) ∼ 1

4

[

(

1 +
(∆ω

ω1

)2
)(

1 + 5
(∆ω

ω1

)2
)

+ 4
( B1

2ω1

)4
]

+
3

4

( B1

2ω1

)4

[cosωτ + cos 2ω1τ ]

+
1

8

(

1 +
∆ω

ω1

)(

[

1 − ∆ω

ω1

]2

− 2
(∆ω

ω1

)2
)

cos(ω + 2ω1)τ

+
1

8

(

1 − ∆ω

ω1

)(

[

1 +
∆ω

ω1

]2

− 2
(∆ω

ω1

)2
)

cos(ω − 2ω1)τ

+
( B1

2ω1

)2
(

1 + 3
(∆ω

ω1

)2
)

[cos
ωτ

2
+ cosω1τ ] − 2

(∆ω

ω1

)2( B1

2ω1

)2

[cos
ω + 2ω1

2
τ + cos

ω − 2ω1

2
τ ]

−1

2

( B1

2ω1

)4

[cos(ω + ω1)τ + cos(ω − ω1)τ + cos
ω + 4ω1

2
τ + cos

ω − 4ω1

2
τ ] (9)

In the above equations we have defined the detuning
parameter ∆ω = A − ω/2 and the parameter ω1 =
√

∆ω2 + (B1/2)2. Resonant conditions of the system is
given for ∆ω = 0 ⇔ ω = 2A giving ω1 = B1/2. While
the coefficients (B1/2ω1)

2n n = 1, 2, rapidly decays to
zero out of resonance, the coefficients (∆ω/ω1)

2n, n =
1, 2, rapidly grows to unity, since the amplitude of the
rf field B1 ≪ A. Hence, all terms in Eqs. (8) and (9),
but the ones proportional to cos(ω±2ω1)τ/2, contribute
to the spectrum at resonance, whereas only the peaks at
ε = 2B0 and ε = 2B0 ± (ω ± 2ω) give a non-negligible
contribution to the spectrum out of resonance. Below we
will focus on few experimentally relevant possibilities.

1. B0 6= 0, B1 6= 0

This case corresponds to applying an external DC
field and rf field in or close to nuclear resonance,
which is known as Electronic Nuclear double Resonance
(ENDOR).26 Under those circumstances the nuclear spin
dynamics is influenced by the rf field, which is reflected
in the dynamics of the electonic spin. This is perhaps
one of the most relevant cases for nuclear spin noise to

be seen in STM experiments.

Clearly, the correlation function K+− in Eq. (8) has a
central peak at the Larmor frequency ε = 2B0, which at
resonance is represented by the first, third and seventh
terms in Eq. (8). This peak should also be measurable
out of resonance since the constant (first) term is non-
vanishing for all frequencies of the rf field. There are
side-bands around the frequency ε = 2B0 ± 2A, repre-
sented by the second, third, fourth, tenth, and eleventh
terms, of which only the fourth and fifth are present out
of resonance. Hence, also these peaks should be seen for
all rf frequencies. However, at resonant conditions there
are peaks around ε = 2B0 ±A, represented by the sixth,
eighth, ninth, twelfth, and thirteenth terms in Eq. (8),
which are not expected to be measurable appreciably far
out of resonance. The same observations hold for the
correlation function Kz, although its spectrum is cen-
tred around ε = 0. Hence, the central peak of this part
is hidden in the white noise spectrum.

In Fig. 3 we display a contour plot of the correlation
functions K+− (upper panel) and Kz (lower panel) as
function of the Fourier frequency ε and detuning ∆ω.
Especially for K+− it is readily seen that there are five
peaks (2B0, 2B0 ± A, 2B0 ± 2A) around resonant con-
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0

FIG. 3: Contour plots of the spectral intensities K+−(ǫ) (up-
per panel) and Kz(ε) (lower panel) as function of the detun-
ing ∆ω in Fourier space (ε). The spectra are generated by
Lorentzian functions of uniform width Γ/B0 = 1/60, using
A/B0 = 1/12 and B1/B0 = 1/100.

ditions ∆ω = 0, while only three peaks remain out of
resonance. In Fig. 4 (solid) we show that total spectrum
at resonance for the same conditions as in Fig. 3.

2. B0 6= 0, B1 = 0

The second case we consider is the case of a nuclear
spin noise in a nondriven limit: B0 6= 0, B1 = 0 (ω =
0). In this case the nuclear hyperfine field provides a
flustuating field sampled by the electronic spin. Thus
the total field will be given by a sum of the external
field, B0, and the AIz term. In this case the Larmor line
will acquire sidebands due to the nuclear hyperfine field.
This is clearly seen from Eq. (8), which in the present
case reduces to

K+−(τ) ∼ 5

4
(1 + 8 cos 2Aτ)e−i2B0τ , (10)

since ω1 = |∆ω| = A giving ∆ω/ω1 = 1. Obviously,
this expression provides a main peak at ε = 2B0 and
sidebands at ε = 2B0 ± 2A, as is illustrated in Fig. 4
(dotted). Similarly, the z-component of the spin-spin
correlation function reduces to

Kz(τ) ∼ 3 − 2 cos 2Aτ. (11)

Thus, there are dips at ε = ±2A, as seen in Fig. 4. Note
that the amplitude of both K+− and Kz are independent

0

1.22

1.3

1.38

ε

in
te

ns
ity

 (
×1

0 -
3 )

B
0

2B
0

B  /B  = 001
1/100

FIG. 4: Intensity of the normalised K+−(ε) + Kz(ε) with
(solid) and without (dotted) rf field applied over the system.

of the nuclear hyperfine field in this case, however the
positions of the peaks obviously shift linearly with A.

Finally we comment on the case with no external field,
e.g. B0, B1 = 0. Then, the impurity spin interact with
the nuclear spin via the nuclear hyperfine field A. As-
suming that the nuclear spin has a a very slow time de-
pendent dynamics we can use the theory developed in
the former section. Thus, under these circumstances the
spin-spin correlation functions will reduce to

K+−(τ) ∼ 5

4
(1 + 8 cos 2Aτ), (12a)

Kz(τ) ∼ 3 − 2 cos 2Aτ. (12b)

As expected, the z-component of the correlation function
is unaffected by the absence of the field H0, whereas the
transverse component is translated to ε0 = 0 as B0 →
0. Hence, the spectrum for Kz is the same as in Fig.
4 (dotted), as well as the spectrum for K+−, however,
shifted to ε = 0.

III. CONCLUSION

In conclusion we presented a theory for nuclear spin
noise spectroscopy. We considered a specific case of an
ESR STM where the nuclear spin dynamics is revealed in
the tunnelling current noise. We argue that noise spec-
troscopy is capable of detecting nuclear spin fluctuation
via a hyperfine coupling to localized impurity electronic
spin. We find that the spectrum of the noise is rich and
depends sensitively on the rf frequency and detuning, Fig.
3. The main features of the spectrum are i) the peak at
the Larmor electronic frequency that acquires hyperfine
split satellites. This part of the spectrum is coming from
the transverse spin fluctuations. The ENDOR like phe-
nomenon occurs in the noise spectrum where the nuclear
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spin flips due to the rf field with nuclear resonance fre-
quency directly affect the electronic spin dynamics. ii)
the peak at zero frequency (that realistically will always
be obscured by the 1/f noise) also acquires satellites at
±A. This observation suggests that one measure the nu-
clear spin dynamics even in the absence of external fields.
as long as the hyperfine lines are outside the 1/f noise
peak.
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APPENDIX A: DERIVATION OF THE SPIN

SUSCEPTIBILITY

In the paper we have been considering the interaction
between an impurity spin S (S = 1/2) on the substrate

surface and a nuclear spin I (I = 1) in the substrate. The
spin Hamiltonian for this system can be written as

HS = B0Sz +AS · I +B1Ix cosωt+B2Sz cosωt, (A1)

with B0 ≫ A≫ B1, B2, which yields the effective Hamil-
tonian

Heff
S = B0Sz +ASzIz +B1Ix cosωt. (A2)

1. K+−

In order to see the effect of the electron spin flips
on the susceptibility, we consider the correlation func-
tion K+−(t1, t2) = tr {S+(t1)S(t2)ρ}, where S±(t1) =

exp{i
∫ t1
0

Heff
S dt}S± exp{−i

∫ t1
0

Heff
S dt}, S+ = | ↑〉e〈↓ |,

S− = | ↓〉e〈↑ |, and ρ = (| ↑〉e〈↑ | + | ↓〉e〈↓ |) ⊗ 11n. Using
the cyclic invariance under the trace gives

K+−(t1, t2) = tr n

{

〈↑ |e−i
∫ t2

t1
Heff

S
dt| ↑〉〈↓ |ei

∫ t2
t1

Heff
S

dt| ↓〉
}

= e−i2B0(t2−t1)tr n

{

〈↑ |e−i
∫ t2

t1
H̄eff

S
dt| ↑〉〈↓ |ei

∫ t2
t1

H̄eff
S

dt| ↓〉
}

= e−i2B0(t2−t1)tr n

{

Te−i
∫ t2

t1
(AIz+B1Ix cos ωt)dtTei

∫ t2
t1

(−AIz+B1Ix cos ωt)dt

}

, (A3)

where H̄eff
S = ASzIz +B1Ix cosωt. Transforming the system into the rotating reference frame gives

Te−i
∫ t2

t1
(AIz±B1Ix cos ωt)dt → e−iωIzτ/2e−i[∆ωIz/ω1±B1Ix/(2ω1)]ω1τ , (A4)

where the detuning parameter ∆ω = A − ω/2, ω1 =
√

∆ω2 + (B1/2)2, and τ = t2 − t1 have been introduced. We
introduce some notation by defining Q± = (∆ωIz ±B1Ix/2)/ω1. In the algebra of the spin 1 operators we note that
I2n
z = I2

z for positive integers n and I2n+1
z = Iz for all non-negative integers n. The same relations hold for Ix, i.e.

I2n
x = I2

x, n ≥ 1, and I2n+1
x = Ix, n ≥ 0. It is then easy to show that also Q2n

± = Q2
±, n ≥ 1, and Q2n+1

± = Q±, n ≥ 0.
These rules for the algebra of the spin 1 operators give

e±iαAτ = 1 −A2(1 − cosατ) ±A sinατ, (A5)

where the operator A is either of Iz , Ix, or Q±, and α is a scalar. Using these identities along with the facts that
tr nIz = tr nIx = tr nIzIx = tr nI

2
z Ix = tr nI

2
xIz = 0, tr nI

2
z I

2
x = 1, tr nI

2
z = tr nI

2
x = 2, and tr n11n = 3, we find that
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the correlation function K+−(t1, t2) = K+−(τ) is given by (recall that the imaginary part of the trace vanishes)

K+−(τ) = e−i2B0τ

{

1

4

[

1 + 2
( B1

2ω1

)2
(

1 +
( B1

2ω1

)2
)

+ 5
(∆ω

ω1

)4
]

+
1

4

( B1

2ω1

)2
(

3 −
(∆ω

ω1

)2
)

cosωτ

+
3

4

( B1

2ω1

)

cos 2ω1τ +
1

8

(

1 +
∆ω

ω1

)4

cos(ω + 2ω1)τ +
1

8

(

1 − ∆ω

ω1

)4

cos(ω − 2ω1)τ

+
( B1

2ω1

)2
(

1 − 3
(∆ω

ω1

)2
)

[cos
ωτ

2
− cosω1τ ]

+
1

2

( B1

2ω1

)2
(

1 +
∆ω

ω1

)2

cos(ω + ω1)τ +
1

2

( B1

2ω1

)2
(

1 − ∆ω

ω1

)2

cos(ω − ω1)τ

+2
∆ω

ω1

( B1

2ω1

)2
(

1 +
∆ω

ω1

)

cos
ω + 2ω1

2
τ − 2

∆ω

ω1

( B1

2ω1

)2
(

1 − ∆ω

ω1

)

cos
ω − 2ω1

2
τ

−1

2

( B1

2ω1

)2
(

1 +
∆ω

ω1

)2

cos
ω + 4ω1

2
τ − 1

2

( B1

2ω1

)2
(

1 − ∆ω

ω1

)2

cos
ω − 4ω1

2
τ

}

. (A6)

By tuning into resonance, i.e. ∆ω = 0 which is given at ω = 2A and yields ω1 = B1/2, it follows that

K+−(τ) = e−i2B0τ

{

5

4
+

3

4
cos 2Aτ +

3

4
cosB1τ +

1

8
cos(2A+B1)τ +

1

8
cos(2A−B1)τ + cosAτ − cos

B1τ

2

+
1

2
cos(2A+B1/2)τ +

1

2
cos(2A−B1/2)τ − 1

2
cos(A+B1)τ −

1

2
cos(A−B1)τ

}

. (A7)

2. Kz

By means of the same approach we derive the z-component of the spin susceptibility, Kz(t1, t2) = tr {Sz(t1)Sz(t2)ρ},
where Sz(t1) = exp{i

∫ t1
0

Heff
S dt}Sz exp{−i

∫ t1
0

Heff
S dt} and Sz = (| ↑〉〈↑ | − | ↓〉〈↓ |)/2. Using that [Sz ,Heff

S ] = 0 we
find, for the | ↑〉〈↑ |-component of ρ,

4Kz(t1, t2) = tr n

{

〈↑ |e−i
∫ t2

t1
Heff

S
dt| ↑〉〈↑ |ei

∫ t2
t1

Heff
S

dt| ↑〉
}

= tr n

{

〈↑ |e−i
∫ t2

t1
H̄eff

S
dt| ↑〉〈↑ |ei

∫ t2
t1

H̄eff
S

dt| ↑〉
}

= tr n

{

Te−i
∫ t2

t1
(AIz+B1Ix cos ωt)dtTei

∫ t2
t1

(AIz+B1Ix cos ωt)dt

}

= tr n

{

e−iIzωτ/2e−iQ+ω1τeiIzωτ/2eiQ+ω1τ

}

=
1

4

(

1 +
(∆ω

ω1

)2
)(

1 + 5
(∆ω

ω1

)2
)

+
( B1

2ω1

)4

+
3

4

( B1

2ω1

)4

[cosωτ + cos 2ω1τ ]

+
1

8

(

1 +
∆ω

ω1

)(

[

1 − ∆ω

ω1

]2

− 2
(∆ω

ω1

)2
)

cos(ω + 2ω1)τ

+
1

8

(

1 − ∆ω

ω1

)(

[

1 +
∆ω

ω1

]2

− 2
(∆ω

ω1

)2
)

cos(ω − 2ω1)τ

+
( B1

2ω1

)2
(

1 + 3
(∆ω

ω1

)2
)

[cos
ωτ

2
+ cosω1τ ] − 2

(∆ω

ω1

)2( B1

2ω1

)2

[cos
ω + 2ω1

2
τ + cos

ω − 2ω1

2
τ ]

−1

2

( B1

2ω1

)4

[cos(ω + ω1)τ + cos(ω − ω1)τ + cos
ω + 4ω1

2
τ + cos

ω − 4ω1

2
τ ]. (A8)

At resonance ∆ω = 0 we then have

Kz(τ)∆ω=0 =
1

8

(

10 + 6[cosωτ + cos 2ω1τ ] + cos(ω + 2ω1)τ + cos(ω − 2ω1)τ + 8[cos
ωτ

2
+ cosω1τ ]

−4[cos(ω + ω1)τ + cos(ω − ω1)τ + cos
ω + 4ω1

2
τ + cos

ω − 4ω1

2
τ ]

)

(A9)
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