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Excess noise in STM-style break junctions at room temperature
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Current noise in nanoscale systems provides additional information beyond the electronic conductance. We
report measurements at room temperature of the nonequilibrium “excess” noise in ensembles of atomic-scale
gold junctions repeatedly formed and broken between a tip and a film, as a function of bias conditions. We
observe suppression of the noise near conductances associated with conductance quantization in such junctions,
as expected from the finite temperature theory of shot noise in the limit of few quantum channels. In higher
conductance junctions, the Fano factor of the noise approaches 1/3 the value seen in the low conductance
tunneling limit, consistent with theoretical expectations for the approach to the diffusive regime. At conductance
values where the shot noise is comparatively suppressed, there is a residual contribution to the noise that scales
quadratically with the applied bias, likely due to a flicker noise/conductance fluctuation mechanism.
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Shot noise, first discussed by Schottky in 1918,1 com-
prises fluctuations in the steady-state, nonequilibrium current
that originate from the discreteness of the electron charge.
This is “excess” noise in addition to the Johnson-Nyquist2,3

current fluctuations that are present at equilibrium in the
absence of an applied bias current. Shot noise tends to be
suppressed in macroscopic structures at finite temperatures
due to electron-phonon interactions. In many mesoscopic
systems, small compared to the inelastic scattering length
for the electrons, shot noise survives and is strongly related
to the quantum nature of transport.4 Many measurements
have been performed in this regime on various devices in
the past two decades, including quantum point contacts,5,6

diffusive metal conductors,7,8 break junctions,9,10 and quantum
Hall systems.11,12 Most of these experiments are conducted
at cryogenic temperatures to avoid thermal smearing of the
noise, though shot noise measurements are possible at room
temperature in sufficiently nanoscale structures.13

The classical Schottky shot noise power in the current
is SI = 2eI , where SI is the spectral density of shot noise,
expressed as the mean squared variation in the current 〈�I 2〉
per unit frequency. Here e is the magnitude of the electron
charge, and I is the average dc bias current. This expression
is derived assuming the arrival of charge carriers is Poisson
distributed, with each electron unaffected by the arrival of a
previous electron. Deviations from Poissonian statistics may
alter the noise, and these changes are usually expressed in
terms of a Fano factor F , such that the measured noise SI =
2eI × F . Values of F �= 1 provide clues about the possible
effects of interactions and underlying transport processes. The
shot noise of mesoscopic conductors at zero temperature is
expressed4 in terms of quantum channels:

SI = 2eV G0

N∑
i

τi(1 − τi), (1)

where G0 = 2e2/h is the quantum of conductance, V is the
bias voltage across the junction, and τi is the transmission
probability of the ith quantum channel. Combining with the
Landauer formula of G = G0

∑N
i τi , the Fano factor at zero

temperature is

F =
∑N

i τi(1 − τi)∑N
i τi

. (2)

The Fano factor carries extra information about the trans-
mission probabilities that a conductance measurement alone
cannot provide. At nonzero temperature (though assuming that
energy is not exchanged between the charge carriers and other
degrees of freedom such as phonons) the situation is more
complex, as the thermal Johnson-Nyquist noise and shot noise
are not readily separable. The total current noise will be

SI = G0

[
4kBT

N∑
i

τ 2
i + 2eV coth

(
eV

2kBT

) N∑
i

τi(1−τi)

]
,

(3)

kB is the Boltzmann constant. In the equilibrium limit V = 0,
both terms in this formula will survive and contribute to
Johnson-Nyquist thermal noise of 4kBT G. In the zero tem-
perature limit, the total noise power will reduce to Eq. (1).
Temperature manifests itself through the smearing of the
Fermi-Dirac distribution of the electrons.

From these equations it is clear that fully transmitting
channels (τi → 1) do not contribute to the shot noise. This
leads to a relative suppression of the noise in nanoscale
systems when the conductance is largely from such open
channels, as in semiconductor point contacts exhibiting
quantized conductance,5 and in metal point contacts.9 In
the few channel limit, the conductance combined with the
noise allow the determination of the number of channels and
their transmission probabilities.10 In the many-channel limit
of diffusive conductors, random matrix theory has provided
valuable insights, and the Fano factor is expected to approach
an average value between 1/3 and

√
3/414–17 depending on

bias conditions and sample geometry. These predictions have
been confirmed in the low temperature limit.7,8,18,19

Inelastic processes such as the excitation of local vibra-
tional modes are predicted to alter F as the bias voltage exceeds
the energy scale of such excitations.20–22 Such effects have
been observed at low temperatures in nanotubes,23 bilayer
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graphene,24 and very recently in atomic-scale Au junctions,25

though the particular changes in F depend in detail on
channel transmission. One motivation of this work is the
need to perform experimental comparisons with Eq. (3) in
a temperature regime where inelastic processes are favored by
kBT exceeding the characteristic energy scale for other degrees
of freedom. For example, at 300 K, the lowest optical phonon
mode in Au (∼17 meV25) should already be populated.

In this paper we consider the noise properties of ensembles
of atomic-scale metal point contacts from tunneling to the
multichannel (G ∼ 6G0) regime, at room temperature, when
inelastic processes involving phonons should be considerably
more important than in the cryogenic limit. Of particular
interest are the accuracy and utility of Eq. (3) under these
conditions, over a broad range of applied bias, and the relative
contributions of other noise mechanisms, such as conductance
fluctuations.26 With biases ranging from 1 < eV/kBT < 10,
we find noise consistent with Eq. (3), with clear relative sup-
pression of the noise at conductance values corresponding to
the quantized conductance peaks in the ensemble histograms.
At still lower bias we cannot resolve the excess noise, while
conductance peaks still remain clear. The Fano factor in the
high conductance, high bias regime is approximately a third
of that in the G < G0 tunneling regime. At the conductances
where noise is relatively suppressed, the bias scaling of the
averaged noise is consistent with conductance fluctuations,
and the magnitude is not unreasonable considering previous
experiments.27

These experiments are performed using a scanning tunnel-
ing microscope (STM)-style break junction, as has become
very popular in the study of molecular conduction.28,29 A
junction is repeatedly made and broken in ambient conditions
between a 50-nm-thick gold film evaporated on an oxidized
silicon substrate, and a cut gold wire. A computer-controlled
piezoactuator is used to form and break the junction typically
several times per second. The noise measurement approach is

similar to that employed previously in a flexural mechanical
break junction.13 The desire to examine the ensemble-averaged
noise leads to the choice of the STM break junction method;
the need for rapid measurement of the noise during the junction
breaking process necessitates the use of a high bandwidth radio
frequency (rf) technique. Throughout the junction formation
and breaking cycle, a “dc” bias square wave (between 0 V
and a desired voltage level, with a frequency of approximately
10 kHz) is applied across the series combination of the gold
junction and a current-limiting 2 k� resistance standard. This
low frequency square wave serves as the (essentially) dc
bias that drives current through the junction. The circuit, as
shown in Fig. 1, employs bias tees to separate the dc and
rf signals coming from the junction. A current preamplifier
measures the current and is recorded electronically, giving a
measure of the junction’s conductance. At the same time, a
lock-in amplifier synchronized to the square wave detects the
difference between the rf power with and without bias applied
to the junction; this is the excess noise power. The bandwidth
of the noise measurement is roughly 250–580 MHz. A detailed
gain-bandwidth product measurement is employed. Since both
shot noise and Johnson-Nyquist noise are expected to be white
over this bandwidth, deviations from white noise arise from the
impedance properties of the measurement circuit as a whole.
The details of the noise analysis and background subtraction
are described in the Appendix.

At every single bias the STM-style motion of the gold
tip repeats hundreds of times to generate a histogram of
conductance, as well as a plot of the ensemble averaged excess
noise power vs conductance. An example is provided in Fig. 2.
As has been seen in many previous experiments in atomic-scale
metal contacts,30 peaks are observed in the conductance
histograms, signifying preferred junction configurations with
specific values of conductance. Peaks are observed at 1G0,
and near other integer multiples of G0, consistent with past
results on Au junctions at room temperature.31 Cryogenic

FIG. 1. (Color online) The schematic of the circuit used to measure dc conductance and rf noise power. All the rf components in this circuit
have 50 � impedance except the sample.
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FIG. 2. (Color online) An example of conductance quantization
(a) and noise suppression (b) at room temperature. (a) A conductance
histogram acquired with 180 mV amplitude for the biasing square
wave. (b) Averaged power spectral density vs conductance. The bin
size in both plots is 0.01G0.

experiments involving shot noise9 and subgap structure in
superconducting contacts32 have demonstrated that the 1G0

peak in Au junctions is dominated by configurations with a
single highly transmitting channel (τ → 1). In our structures
usually the first three conductance peaks are readily resolvable
in the histogram. The related ensemble-averaged noise power
measurement is also shown. As is clear from the figure,
the ensemble-averaged noise power is clearly suppressed
near conductance values where the conductance histogram is
peaked.

The transmission of rf signals always faces the problem
of power reflection, which originates from impedance mis-
match. Conversely, reflection itself carries information about
impedance. In our measurement circuit, all the commercial rf
electronic components are of 50 � impedance. We therefore
expect significant impedance mismatch and reflections only
between the STM-style gold junction and the transmission
lines. As an added complication compared to a fixed device
configuration, the tip’s repeated vertical motions introduce the
extra complexity of a strongly time-varying dc conductance
into the junction’s rf properties. In principle a measurement
should be performed to properly characterize the impedance
mismatch between the junction and the rf measurement
circuitry at each conductance value. Ideally, knowing the rf
properties of the nanoscale junction and the accompanying
electronics, including the gain-bandwidth product of the
amplifier chain, it should be possible to infer the actual current
noise (A2/Hz across the junction) from the measured rf power
seen by the power meter. However, in the STM break junction
setup, in which the dc conductance of the junction changes
by orders of magnitude on millisecond time scales, with our
equipment it is not possible to measure all of the relevant rf
parameters in real time. As an approximation to this, we instead
measure the reflection properties as a function of conductance
averaged over the ensemble of junction configurations. This
should at least indicate whether there are gross variations in
the efficiency of the junction’s rf coupling to the rest of the
circuit.

Following on the approach reported previously in measure-
ments of the impedance properties of a vacuum photodiode,13

we perform a reflectance measurement as shown in Fig. 3. A
commercial white noise source is used to provide wide-band
white noise across the rf bandwidth of interest. The amplitude
of this noise is modulated by a subsequent rf switch that
is turned on and off at the same (acoustic) frequency used
for the square wave voltage bias we applied in excess noise
measurement. Part of the white noise will be reflected at the
boundary between the gold junction and the transmission
line to the bias tee. The reflected power goes through a
directional coupler as well as the same amplifier chain used
in the excess noise measurements, and is registered by the
logarithmic power detector. Simultaneously, the junction’s
cyclical STM-style motion is executed, with an applied dc
bias across the junction to allow the simultaneous acquisition
of a conductance histogram. This measurement gives a picture
of the relation between ensemble averaged reflections and the
conductance of the junction. While the reflection measurement
cannot provide all the information about the junction’s rf
properties, at least it provides a rough check that nothing dra-
matic happens in terms of the ensemble-averaged impedance
mismatch over the conductance range. The reflection averaged
over the ensemble of junction configurations is around 22%.
There is some systematic variation with conductance, but this
is small, less than 2% over 10 G0.

Since the impedance mismatch between the junction and
the measurement circuit does not vary dramatically on average
over the range of junction configurations, there should be a
scale factor (approximately constant across the conductance
range) between the measured power and the true current noise
across the junction. We attempt to find this factor by using
the knowledge that the Fano factor in the tunneling regime
G � G0 approaches one in the limit that a single poorly
transmitting channel dominates the conductance, as apparent
from Eq. (1).

We acquire conductance histograms and ensemble-
averaged noise using a series of square wave bias voltages
from a few millivolts to several hundreds of millivolts. An
example of such ensemble-averaged noise data for eight
different bias levels is shown in Fig. 4. All the data shown
in this figure were taken continuously in one day to ensure
an identical experimental environment (lab temperature, any
stray rf background). In our system no clear excess noise can
be detected at bias voltages below about 25 mV, corresponding
to kBT at T ≈ 300 K. Noise suppression at conductances
corresponding to the first three peaks in the conductance
histograms are very clear, and the magnitude of the detected
noise power is monotonously increasing with bias as expected.
Note that the suppressions are not complete. This indicates that
at least some of the junction configurations corresponding to
peak conductance values result from a mixture of multiple,
partially transmitting quantum channels.

We are interested in the scaling of the noise with bias, as this
reveals the Fano factor. Working with the data sets in Fig. 4,
we can specify a particular conductance value, and for each
applied square wave bias voltage we can compute the actual
voltage drop V across the junction. Starting from Eq. (3) we
can see that plotting the detected power spectral density as
a function of X = 4kBT G[(eV/2kBT ) coth(eV/2kBT ) − 1]
should produce a linear graph, with the slope giving the
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FIG. 3. (Color online) Top: Schematic of reflection measurement setup. Bottom: Measured, ensemble-, and bandwidth-averaged reflection
over the whole conductance range.

(zero temperature) Fano factor F . Here G is the conductance of
the junction and T is assumed to be the ambient temperature
≈300 K. In Fig. 5(a) we plot data for three closely spaced
values of conductance, all below G0. The figure shows that the
noise is in fact linear when plotted as a function of X, and the
Fano factor is decreasing as the conductance approaches 1 G0.
These are consistent with the measured signal originating from
shot noise, and the suppressions shown in Fig. 4(a) originating
from the saturated channel mechanism of Eqs. (1) and (3).
Qualitatively similar declines in Fano factor are also observed
as the conductance approaches the values associated with the
other two peaks in conductance histograms/suppressions in
measured noise power.

We now consider the situation at higher conductances, when
the number of channels involved in transport is large compared
to one. As discussed above, we assume that the Fano factor
in the low conductance regime is close to one, as expected if
transport is dominated by a single poorly transmitting channel.
We perform a linear fit to the noise vs X data at G ≈ 0.1G0,
and assume that corresponds to a true Fano factor close to one
(though a true single channel device would have F ≈ 0.9 near
that conductance). In the particular data set shown in Fig. 5(a),
the lowest conductance data around G = 0.45G0 are still well
described by a similar Fano factor, as shown by the blue
line. This suggests that, when looked over the full ensemble
average, the conductance in this regime results from several
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FIG. 4. (Color online) Excess noise spectral density vs conduc-
tance at different biases. Colors represent different bias voltages
applied across the series combination of the junction and the
resistance standard.

poorly transmitting channels, rather than being dominated by a
single channel with a transmittance of 0.45. This indicates that
a large contribution to the conductance histogram results from
junctions with comparatively blunt tips. Figure 5(b) shows,
on the same plot as that of low conductance data, the noise
data vs X at around 4, 5, and 6G0. Identically scaled linear
fits show slopes of 0.39, 0.34, and 0.31, respectively. These
relative slopes are comparatively insensitive to the choice
of the low conductance fits used to find the scaling factor,
provided G < ∼0.5G0. At even higher conductance values
not shown in the figure, the inferred Fano factors also do not
vary by much, decreasing to around 0.25 near 10G0.

These observations are roughly consistent with expecta-
tions for a crossover toward diffusive conduction. In diffusive
conductors that are small compared to the inelastic scattering
length for both electron-electron (�e-e) and electron-phonon
(�e-ph) interactions, theoretical calculations14–17 and experi-
ments on different samples at helium temperature8 agree that
F → 1/3 in this regime. In the limit that the constriction length
L exceeds �e-e, the expected reduction factor is predicted33

to be
√

3/4 ≈ 0.433. Since both longitudinal and transverse
dimensions in our junctions are comparable to the atomic
scale, it seems likely that L � �e-e,�e-ph, and our data show
consistency with the prediction of 1/3. This consistency with
a diffusive picture is a bit surprising, given that the length
and transverse dimensions of the point contact should still be
around 1 nm even when G ≈ 10G0. Experiments involving
Pb junctions34 have shown a similar transition to the diffusive
regime even at relatively low conductances, though in that
work this is ascribed to the importance of multiple orbitals
per atom contributing to the conductance, leading to enhanced
channel mixing. While this multiorbital mechanism should
not apply for Au junctions, the lack of clear peaks in the
conductance histograms (and corresponding suppressions in
the noise) above 3G0 are consistent with enhanced channel
mixing in our structures relative to that seen in other Au
experiments.31,35 This is further supported by the observation
mentioned in the previous paragraph that conduction in the

FIG. 5. (Color online) Noise as a function of scaled bias for all
eight data sets shown in Fig. 4. Top panel: Data below 1G0. Data
points at around 0.45G0, 0.78G0, and 0.85G0 are shown in the plot
as well as linear fits to X for those points. Bottom panel: Data around
4G0, 5G0, and 6G0, with inferred Fano factors (relative to that at
∼0.1G0) of 0.39, 0.34, and 0.31 separately.

tunneling regime in this data set appears to involve multiple
poorly transmitting channels. It has been pointed out before8

that the prediction of a suppression factor of about 1/3 is
surprisingly robust. Investigations with different materials and
over a broader range of temperature and bias should shed light
on the extent of universality in this suppression.

We also consider the scaling of the excess noise at
conductance values where the shot noise contribution is
expected to be maximally suppressed. We have taken data sets
of the type shown in Fig. 4 on multiple occasions with different
tips, film samples, and cleaning/annealing procedures. To best
study the bias scaling of the remaining excess noise near 1G0,
we examine a data set when the suppression at 1G0 was partic-
ularly well defined. The result is shown in Fig. 6(a). With the
comparatively strong suppression of shot noise power in this
data set, we find that the measured noise vs X is nonlinear. This
nonlinearity is only clearly seen at conductances where the
noise is relatively suppressed. A natural explanation for this
is a contribution to the measured noise from conductance
fluctuations, commonly termed “flicker” noise, which often
has (in macroscale systems) a 1/f frequency dependence.27

Such flicker noise, originating with fluctuations in the actual
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FIG. 6. (Color online) In the upper panel, off-suppression data
and on-suppression noise data are compared. The former still has
good linearity as a function of X. However, for the latter a deviation
from a linear dependence is observed when the conductance is
around 1G0 and the shot noise contribution is relatively suppressed.
The lowest (gray) points and linear fit correspond to the 1G0 data
with a best-fit quadratic-in-voltage contribution removed. Panel (b)
is a purely quadratic fit of the excess noise vs bias voltage at the
conductances corresponding to the first two suppressions. The noise
power here has been converted to mean squared voltage per frequency,
for comparison with flicker noise. Both of these fitting procedures give
flicker noise contributions of the same order of magnitude.

junction resistance, should scale quadratically with voltage
across the junction at a given conductance, when recast as
voltage fluctuations. Figure 6(b) plots the excess noise spectral
density vs bias voltage at the first two suppressions, with
the noise power converted to mean squared voltage per unit
frequency. Quadratic fits of the form SV = AV 2 + BV + C

describe the data well, with a comparatively small linear
term B as well as an even more tiny residual intercepts C.
With this fitting procedure we find A ≈ 4 × 10−15 Hz−1. We
note that such a fitting procedure overestimates the size of A

since the hyperbolic cotangent term in Eq. (3) does contribute
some nonlinearity in such a plot even when the only noise
is finite temperature shot noise. Instead if we fit a quadratic
in voltage term in addition to the finite temperature shot
noise expectation of Eq. (3), we find A ≈ 1.4 × 10−15 Hz−1,
smaller but of the same order of magnitude. Using the

phenomenological Hooge’s law,26

SR(f )/R2 = α

Nf ν
, (4)

with power ν ranging between 1 and 2, we compared our
inferred magnitude of A with values observed at lower
frequencies and higher junction conductances in other gold
point contacts by Wu et al.27 The result depends strongly on
the assumed value of ν, which is expected to fall between 1
(traditional 1/f noise) and 2 (expected for a single two-level
fluctuator27). We find a flicker noise amplitude smaller than
the Wu et al. values extrapolated to 1G0 with the fitted ν

value in their case; however, if ν ≈ 1.7 over frequency from
their sub-100-kHz measurements to our rf scale, our value
for A is compatible with their results. We can reasonably
conclude that much of the nonlinearity in the noise vs bias
at conductances when shot noise is suppressed results from
flicker noise/conductance fluctuations. The relatively small
magnitude of this noise suggests a comparatively rapid decay
of flicker noise with frequency in the rf range in atomic-scale
junctions. It would be interesting to consider the temperature
variation of the flicker noise magnitude over this frequency
range, which would help clarify whether thermal activation of
defect motion is relevant here.

It is worth considering what kind of mixing of quantum
channels is required to produce the evolution of Fano factor
with conductance that we infer from our data, within the
noninteracting picture of Eq. (1). A simple “toy model”
simulation of possible Fano factor evolution is provided,
which depends on the choice of how the channels {τi} open as
conductance is increased. The result is shown in Fig. 7(b). We
assume for simplicity a set of uniformly separated hyperbolic
tangent functions for the form of {τi} as a function of G, which
is shown on the bottom. Each hyperbolic tangent is specified by
a central conductance at which τi = 0.5, and a width in G over
which the channel “turns on.” The resulting Fano factors have
been plotted on the top. Multiple colors/linestyles represent
different choices of the central conductances and turn-on
widths. In top graph, the uppermost line (blue) shows no clear
suppression of noise vs G due to the heavy overlaps between
channels. In contrast, the lower most curve (black) is in the
limit of well-separated channels that do not mix. Channels’
mixture tends to smear out suppressions and raise the Fano
factor, which is the qualitative reason that in a larger-sized
diffusive conductor only a roughly constant Fano factor results.
Figure 7(b) shows an example (nonunique) of a set of
transmission channels that agree reasonably well with the
measurements. Additional constraints (such as those provided
by subgap conductance in superconducting junctions32,36) are
necessary to better constrain the specific channels and their
evolution.

We note that we do not see clear signatures of bias-
dependent changes in the Fano factor in these ensemble
averaged measurements. As the low temperature data in
Kumar et al. show,25 changes in the apparent Fano factor
due to excitation of optical phonons can be of either sign in
single-channel devices, with a crossover between enhancement
and suppression of F taking place at a particular transmittance,
around 0.95. With respect to the Au optical phonon at
∼17 meV, all of the data in this paper are in the high bias regime
above the voltage threshold. Our measurements show that in
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FIG. 7. (Color online) Models of channel mixing and Fano
factors. The top panel is the expected Fano factor as a function of
conductance for the particular channel mixing shown in the second
panel. The third panel shows the measured Fano factor for a particular
set of data, and a theoretical approximation to that data based on the
channel openings shown in the bottom panel. Colors and linestyles
represent different evolutions of {τi} as a function of conductance.

Au junctions at room temperature there are no clear inelastic
thresholds above this energy that survive ensemble averaging
over junction configurations. Other analysis approaches that
look at subensembles may be more revealing37 and are in
progress.

Here we have reported a calibrated measurement of
shot noise and its bias dependence in STM-style gold
junctions at room temperature. We observe in general that
the shot noise spectral density is proportional to X ≡
4kBT G[eV/2kBT coth(eV/2kBT ) − 1], as expected for a
nanoscale junction with a small number of channels. The slope
of such a plot is a means of extracting the zero-temperature
Fano factor of the noise. The Fano factor observed at higher
conductances (several conductance quanta) is roughly 1/3 that
seen in the tunneling regime, consistent with expectations as
the diffusive limit is approached. At suppressions where shot

noise is comparatively small, nonlinearities in the noise vs X

are observed. It is likely that the origin of this nonlinearity
is conductance fluctuation/flicker noise; this is supported by
fits showing an approximate quadratic dependence of the
noise on the bias across the junction, and the magnitude of
this noise is roughly consistent with that extrapolated from
other experiments.27 The evolution of the Fano factor with
conductance can be described adequately within the noninter-
acting picture through reasonable choices of the evolution of
channel numbers and transmittances with conductance. These
experiments highlight that the quantum nature of the electronic
conduction remains detectable and important as electronic
systems approach the atomic scale, even at room temperature.

The authors acknowledge the support of NSF Award DMR-
0855607, and useful conversations with J. van Ruitenbeek,
C. Schönenberger, and L. Richardson.

APPENDIX: BACKGROUND SUBTRACTION

Scanning tunneling microscope-style break junctions pro-
vide us with a way to sample a wide range of conductance
values quickly. However, when using a lock-in measurement of
the conductance, the repeated change of the conductance over
orders of magnitude also causes rapid changes in the phase
of the conductive (as opposed to displacement) contribution to
the current, and therefore the noise signal. As a practical matter
it is not possible to adjust the phase of the lock-in measurement
“on the fly” to separate out the conductive and displacement
contributions to the current and the noise. Instead, in our
measurement the lock-in was set to measure the rms magnitude
R of the output of the power detector.

Unfortunately, this introduces an effective background. To
see this, recall that R =

√
(X2 + Y 2), where X, Y are the two

orthogonal components of the measured signal. Even without
any input signal from the power detector X and Y fluctuate
about zero due to amplifier noise. As a result, R averages to
a nonzero positive value even in the absence of a real noise
signal, and this value is not negligible in our measurement.
During a real measurement, R can be expressed as R =√

(X + Xr )2 + (Y + Yr )2, where Xr and Yr represent the
random errors (amplifier noise, fluctuating about zero) on the
two components. To remove this background on average, we
have to perform one extra measurement at essentially zero bias,
to characterize the background. Practically we still use a very
low bias voltage, usually around 3 mV, which is small enough
that no true excess noise is detectable at room temperature, but
we are still able to measure conductance. In principle the output
of the noise measurement lock-in during this measurement
gives R0 = √

X2
r + Y 2

r . After average 〈R2
0〉 = 〈X2

r 〉 + 〈Y 2
r 〉,

while 〈R2〉 = 〈X2〉 + 〈X2
r 〉 + 〈Y 2〉 + 〈Y 2

r 〉, because the 〈Xr〉
and 〈Yr〉 terms average to zero. We can then consider
〈R2〉 − 〈R2

0〉 as the averaged mean square signal from the
power detector, which is the desired quantity.
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