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Semicond. Sci. Technol. 7 (1992) 8215-8221. Printed in t h e  UK 

T her mo -el ect r i c properties of 
quantum point contacts 

H van Houtent, L W Molenkampt, C W J Beenakkert and 
C T FoxonS 
tPhilips Research Laboratories, 5600 JA Eindhoven, The Netherlands 
*Philips Research Laboratories, Redhill, Surrey RH1 5HA. UK 

Abstract. The conductance, the thermal conductance, the thermopower and the 
Peltier coefficient of a quantum point contact all exhibit quantum size effects. We 
review and extend the theory of these effects. In addition, we review our 
experimental work on the quantum oscillations in the thermopower. observed 
using a current heating technique. New data are presented showing evidence for 
quantum steps in the thermal conductance, and (less unequivocally) for quantum 
oscillations in the Peltier coefficient. For these new exoeriments we have used a 
quan tum point contact as a miniature thermometer 

1 .  Introduction 

A quantum point contact is a short constriction of 
variable width, comparable to the Fermi wavelength, 
defined using a split-gate technique in a high-mobility 
two-dimensional electron gas (ZDEG). Quantum point 
contacts [ I ,  21 are best known for their quantized con- 
ductance at  integer multiples of 2e21h. For a general 
review of quantum transport in semiconductor nanos- 
tructures see [3]. The thermo-electric properties of 
quantum point contacts have recently begun to be 
explored as well. 

The Landauer-Biittiker formalism [4,5], which 
treats electrical transport as a transmission problem 
between reservoirs, has been generalized to thermal 
transport and to thermo-electric cross-effects by Sivan 
and Imry [SI and by Butcher [7] .  Streda [8] has 
considered the specific problem of the thennopower S of 
a quantum point contact. He found that S vanishes 
whenever the conductance of the point contact is 
quantized, and that it exhibits peaks between quantized 
conductance plateaux. The magnitude of the peaks de- 
pends on the energy dependence of the transmission 
probability t(E) through the point contact. To the extent 
that a quantum point contact behaves like an ideal 
electron waveguide, t ( E )  has a unit step-function energy 
dependence. A somewhat more realistic model of a 
quantum point contact-introduced by Biittiker [Sl-is 
to assume that the electrostatic potential has a saddle 
shape. This particular model has also been used to 
calculate the thermopower [lo]. The same theoretical 
framework can be used to evaluate the thermal con- 
ductance K and the Peltier coefficient n, which exhibit 
quantum size effects similar to those in the conductance 
and the thermopower, respectively. We review the theory 
in section 2. For a discussion of thermo-electric effects in 
different transport regimes, we refer to a recent article by 
Ben-Jacob et al [l  11. 
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We have used a current heating techniquet to ob- 
serve the characteristic quantum size effects in the 
thermo-electric properties of a quantum point contact. 
Our previous work on the quantum oscillations in the 
thermopower S [13,14] is reviewed in subsection 3.1. 
Because of the sizable thermopower, a quantum point 
contact can be used as a miniature ‘thermometer’, to 
probe the local temperature of the electron gas. We have 
exploited this in our design of novel devices with multiplc 
quantum point contacts, with which we demonstrate 
quantum steps in the thermal conductance K as well as 
quantum oscillations in the Peltier coefficient of a 
quantum point contact. The first results of these experi- 
ments are presented in subsections 3.2 and 3.3. Conclud- 
ing remarks are given in section 4. 

2. Theoretical background 

2.1. Landauer-Biittiker formalism of thermo-electricity 

The Landauer-Biittiker formalism [4,5] relates the 
transport properties of a conductor to the transmission 
probabilities between reservoirs that are in local equilib- 
rium. Let us assume that only two such reservoirs are 
present. In equilibrium, the reservoirs are a t  chemical 
potential E, and temperature 7: In the regime of linear 
response, the current I and heat flow Q are related to the 
chemical potential difference Ab and the temperature 
difference AT by the constitutive equations [IS] 

(A) = (: L)%?) 
The thenno-electric coefficients L and M are related by 

t c u r r e n t  heating has also been used by Gallagheretat (121 to study 
fluctuations in the thermopower in the phase coherent diffusive 
transport regime. 
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an Onsager relation, which in the absence of a magnetic 
field is 

M =  -LT (2) 
Equation (1 )  is often re-expressed with the current I 
rather than the electrochemical potential A p  as an 
independent variable [l5], 

C)=(R n - K  " ( I ) .  AT ( 3 )  

The resistance R is the reciprocal of the isothermal 
conductance G. The thermopower S is defined as 

The Peltier coefficient II, defined as 

n = (Q) I A T = O  
= M / G  = ST 

(4) 

is proportional to the thermopower S in view of the 
Onsager relation (2). Finally, the thermal conductance K 
is defined as 

K - = - K (  1 + T I .  S'GT (6) 

The thermo-electric coefficients are given in the 
Landauer-Biittiker formalism by [6,7] 

(7) 

K 2e' k ,  ' m af 
- = - (-) Io dEZ t(E)[(E - E, ) /ks  TI'. T h e  

(9) 

These integrals are convolutions of t(E), which character- 
izes the conductor, and a kernel of the form Emdf/dE, 
m = 0,1,2, with E = ( E  - E,)/kn7: and f the Fermi 
function 

(10) f ( ~ )  = [exp(e) + I]-' .  

Plots of these kernals are given in figure 1. 
Both df/ds and &'df/dE are symmetric functions of E ,  

which is why the conductance, G, and the thermal 
conductances K and K are determined to  first order by 
t(EF). (The term within brackets in equation (6) is usually 
small.) In contrast, &df/dE is an anti-symmetric function 
of E ,  so that the thermo-electric cross-coefficients L, S, M ,  
and Il are determined mainly by the derivative dt(E)/dE 
at  E = E,. This is substantiated by a Sommerfeld expan- 
sion of the integrals (7)-(9), valid for a smooth function 
t(g to lowest order in k,T/E, [7] 

2e' 
h 

G - t (EF)  

-E dflde 0.5 1 
0.0 -7 

- E ~  dfkk 0.5 I I 
0.0 - 

-5 0 
E 

5 

Figure 1. From top to bottom: Fermi-Dirac distribution 
function f, and PdfIdE. for m=O. 1.2, as a function of 
E = ( E - E , ) / k ,  T. These functions appear in expressions 
(7)-(9) for the thermo-electric coefficients. 

2e2 
h K % --L,Tt(E,) (13) 

with Lo E (kB/e)'n2/3 the Lorentz number. In this 
iwdiivu R" = - i.,TG, so that for S' << i, one 

finds from (6) the Wiedemann-Franz relation 
. 

K L,TG. (14) 
As discussed below, the thermo-electric coefficients of a 
quantum point contact may exhibit significant deviations 
from equations (11)-(14). The inadequacy of the 
Sommerfeld expansion is a consequence of the strong 
energy dependence of [(E) near E,.  In addition, S' << Lo 
does not hold for a quantum point contact close to 
pinch-off. 

2.2. Quantum point contacts as ideal eleetron waveguides 

In this subsection we discuss the thermo-electric pro- 
perties of a quantum point contact modelled as an ideal 
electron waveguide, matched perfectly to the reservoirs at 
entrance and exit. Such a waveguide bas a transmission 
probability with step-function energy dependence 

The steps in t (E)  coincide with the threshold energies E, 
of the one-dimensional subbands or modes in the 
quantum point contact. The integrals over the energy (7) 
and (8) determining the conductance and the thermo- 
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power can be evaluated analytically. By substitution of 
(15) into (7), one finds for the conductance 1 

with E, E (E .  - E,)/k, 7: This reduces to G = (2e2/h)N at. 
low temperatures (N is the number of occupied sub- 
bands). Similarly, using the identity 

1; f d E  = k,TIn[l + exp(EF/knT)] (17) 

we find the exact result 

I 2e2k, 
~ = ~ ~ ~ T ~ [ l n ( l  +e-")+en(1 +e'.)-']. (18) 

The thermopower S = - L/G and the Peltier coefficient 
n = TS follow immediately from (16) and (18). At low 
temperatures the tbermopower vanishes, unless the 
Fermi energy is within k,Tfrom a subband bottom. In 
the limit T = 0 one finds from (16), (18) that the maxima 
are given by 

k, In2 
e N - f  

s =  if E, = E,; N > 1. (19) 

(Note that at  E, = E, one also has G = (2e2//h)(N - i).) 
Equation (19) was first obtained by Streda [SI. For the 
step-function model the width ofthe peaks in the thermo- 
power as a function of E, is of order k,7: at least in the 
linear transport regime of small applied temperature 
differences across the point contact (AT << T). 

The thermopower of a quantum point contact with a 
step-function t ( E )  does not exhibit a peak near E, = E,. 
Instead, it follows from (16) and (18) that - S  increases 
monotonically as E, is reduced below E, 

I (20) 
k 
e 

Note also that for E ,  >> 1, S increases as 1/T as the 
temperature is reduced. This result is probably not very 
realistic. Indeed, for a saddle-shaped potential model of a 
quantum point contact we find instead in this regime a 
constant value which is proportional to T (see subsection 
2.3). 

Plots of the thermo-electric coefficients as a function 
of Fermi energy, calculated from (7)-(9) and (15), are 
given in figures 2(a) and 2(b), for T = 1 K and T = 4 K  
respectively. The values for E. are those for a parabolic 
lateral confinement potential V ( y )  = V, + $ m o : y 2 ,  with 
ho, = 2.0meV. We draw the following conclusions from 
these calculations. 

1. The temperature T affects primarily the width of the 
steps in G, and of the peaks in S, leaving the value of G on 
the plateaux, and the height of the peaks in S essentially 
unaffected. 
2. The thermal conductance K (divided by LOT) exhibits 
secondary plateaux near the steps in G, in violation of the 
Wiedemann-Franz law. At 4 K  the secondary plateaux 
in K are even more pronounced than those in phase with 

.yz -2  (1 + E l ) .  

l 

1 
~ 

0 1 2 3 4 5 
(EF-Vo)/hwv 

1 
I- 
t: 
vi 

\ 

0 
0 1 2 3 4 5 

(EF-Vo)/h~, 

Figure 2. Calculated conductance G (full curve), thermal 
conductance KIL,T (broken curve). and the thermopower 
Sand Peltier coefficient l l IT=S (same dotted curve) for a 
quantum point contact with step function ?(E)  as a 
function of Fermi energy at ( a )  1 K and ( b )  4 K. The 
parameter used in t h e  calculation is hwV=2meV. 

the plateaux in the conductance. These piateaux, which 
apparently have not been noted previously, are due to the 
bimodal shape of the kernel e2df/de (see figure 1). 
3. The coefficients K and K differ from each other 
whenever the thermopower S does not vanish (cf (6)). We 
have verified that this correction is usually negligible, 
except in the vicinity of the first step in G. 

2.3. Saddle-shaped potential 

A more realistic model of a quantum point contact 
should account for the rounding of the steps in t(E). One 
way to do this is to model the electrostatic potential 
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V(x,  y )  in the quantum point contact by a saddle-shaped 
function [9] 

V(x,y)= vo-$"x2 + t m o : y '  (21) 
where V, is the height of the saddle, wx characterizes the 
curvature of the potential barrier in the constriction, and 
oy the lateral confinement. The energies E ,  are given by 

E, = vo + (n - +)hO,. (22) 
The transmission probability is Cl61 

Note that the step-function [ (E)  is recovered in the limit 

To  allow a comparison with the results in figure 2 for 
the step-function transmission probability, we have cal- 
culated the thermo-electric coefficients as a function of 
Fermi energy from (7)-(9) and (23), using the same value 
of 2meV for the subband separation hw,, and taking 
ha, 2 0.8meV in order to reproduce the typically ob- 
served conductance step-widths at  low temperatures. The 
results at  T = 4 K (not shown) were found to be identical 
to those given in figure 2(b) for the step-function t (E) .  At 
T = 1 K there are some differences, however, as seen in 
figure 3: 

1. The peak heights of the oscillations in the thermo- 
power S (or in the Peltier coefficient n) are reduced by 
about a factor of two. 
2. The deviations from the Wiedemann-Franz law 
K = L,TC are much smaller. In particular, the secondary 
plateau-like features (coinciding with the steps in C )  are 
absent. 

The behaviour of S for E, << E, at low temperaiures 
is qualitatively different from that discussed in subsection 
2.2 for a step-function t(E). Approximating 
[ (E)  z [ I  + exd2n(E, - €)/fiwx)]-', and using the 
Sommerfeld expansion results (1 1) and (12), we find that 
S reaches an &-independent value (not visible in figure 3) 

OJO, + 0. 

which is proportional to 7: 

3. Experiments 

3.1. Thermopower 

We have previously reported [13,14] the observation of 
quantum oscillations in the thermopower S of a quantum 
point contact using a current heating technique. We 
review the main results here. The experimental arrange- 
ment is shown schematically in figure qa).  By means of 
negatively biased split gates, a channel is defined in the 
2DEG in a GaAs-AIGaAs heterostructure. A quantum 
point contact is incorporated in each channel boundary. 
The point contacts 1 and 2 face each other, so that the 

Figure 3. Calculated conductance G (full curve), thermal 
conductance K I L , T  (broken curve), and the thermopower 
Sand  Peltier coefficient W T = S  (same dotted curve) for a 
quantum point contact with a saddle shaped potential. as 
a function of Fermi energy at 1 K. Parameters used in the 
calculation are hw,=2 meV, hw,=O.8 meV. 

voltage difference V, - V, (measured using ohmic con- 
tacts attached to the 2DEG regions behind the point 
contacts) does not contain a contribution from the 
voltage drop along the channel. 

On passing a current I through the channel. the 
average kinetic energy of the electrons increases, because 
of the dissipated power (equal to (l/W,,)2p per unit area, 
for a channel of width W,, and resistivity p). We ignore 

assume that we can describe the non-equilibrium energy 
distribution in the channel by a heated Fermi function at 
temperature T + AT Since the point contacts are 
operated as voltage probes, drawing no net current, the 
temperature difference AT gives rise to a net 
thermovoltage 

,,,c iiei di$i ve;ociiy acq.uii.ed s u y  e:;eciioii 

V, - V, =(SI - SJAT 

As dictated by the symmetry of the channel (see figure 
4(a)), this voltage difference vanishes unless the point 
contacts are adjusted differently, so that they have 
unequal thermopowers S ,  # S,. 

A typical experimental result [I31 is shown in figure 
4(h). The gate voltage defining point contact 1 is scanned, 
while that of point contact 2 is kept constant. In this way, 
any change in the voltage difference V, - V2 is due to 
variations in S , .  ( S ,  is not entirely negligible, which is 
why the trace for - ( V, - V,) drops below zero in figure 
4(b).) Also shown is the conductance G of point contact I, 
obtained from a separate measurement. For more 
negative gate voltages, where the point contact resistance 
exhibits quantized plateaux, we observe strong oscilla- 
tions in V, - V,. The peaks occur at gate voltages where 
G changes stepwise because of a change in the number of 
occupied I D  subbands in point contact 1. These ob- 

(25) 
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Figure 4. (a) Schematic representation of the device 
used to demonstrate quantum oscillations in the 
thermopower of a quantum point contact by means of a 
current heating technique. The channel has a width of 
4 pm, and the two opposite quantum point contacts at its 
boundaries are adjusted differently. (6) Measured 
conductance and voltage - ( V ,  - V,) as a function of the 
gate voltage defining point contact 1. at a lattice 
temperature of 1.65 K and a current of 5pA.  The gates 
defining point contact 2 were kept at -2.OV. 

servations are a manifestation of the quantum oscilla- 
tions in S described in section 2. 

A detailed comparison of the oscillations in figure 4(b) 
with the ideal electron waveguide model (extended to 
the regime of finite thermovoltages and temperature 
differences) has been presented elsewhere [13]. The de- 
crease in amplitude of consecutive peaks is in agreement 
with equation (19). We therefore only discuss the 
amplitude of the strong peak near G = 1.5(2e2/h). The 
stepfunction transmission probability result (19) predicts 
S -  - 4 0 p V K - '  for this peak, but a value 
S- -201 V K - '  is probably more realistic (cf figure 3). 
The measured value of about 50pV for the amplitude of , 

that peak thus indicates that the temperature of the 
electron gas in the channel is AT - 2 K  above the lattice 
temperature T = 1.65 K. 

The increase in temperature AT is expected to be 
related to the current in the channel by the heat balance 
equation 

c J T  = ( [ / W , d 2 p ~ ,  (26) 

with c, = (x2/3)(kBT/E,)n.kB the heat capacity per unit 
area, n, the electron density, and re an energy relaxation 
time associated with energy transfer from the electron gas 
to the lattice. The symmetry of the geometry implies that 
V, - V,  should be even in the current, and equation (26) 
predicts more specifically that the thermovoltage dif- 
ference V, - V, K A T  should be proportional to 12-at 
least for small current densities. This is born out by 
experiment [13, 141 (not shown). Equation (26) allows us 
to determine the time rz from the experimental value 
AT - 2 K. Under the experimental conditions of figure 
'yb) we have T = 1.65 K, 1 = 5 pA, W,, = 4pm, p = 2 0 a .  
We thus find T~ - 10-los, which is not an unreasonable 
value for the 2DEG in GaAs-AIGaAs heterostructures at 
helium temperatures 1171. 

The sudden decrease in VI - V, beyond the last peak 
(strong negative gate voltages) is not quite understood. 
As discussed in section 2, the behaviour of S in this 
regime depends crucially on the details of the energy 
dependence of t (E) .  

3.2. Thermal conductance 

The sizable thermopower of a quantum point contact (up 
to -4OpVK-') suggests its possible use as a miniature 
thermometer, suitable for local measurements of the 
electron gas temperature. We have used this idea in an 
experiment designed to demonstrate the quantum steps 
in the thermal conductance of a second quantum point 
contact. 

The geometry of the device is shown schematically in 
figure 5(a). The main channel has a boundary containing 
a quantum point contact. Using current heating, the 
electron gas temperature in the channel is increased by 
A T  giving rise to a heat flow Q through the point contact. 
This causes a steady state temperature rise ST of the 
ZDEG region behind the point contact (neglected in the 
previous subsection), which we detect by a measurement 
of the thermovoltage across a second point contact 
situated in that region. 

T o  increase the sensitivity of our experiment, we have 
used a low-frequency AC current to heat the electron gas 
in the channel, and a lock-in detector tuned to the second 
harmonic to measure the root-mean-square amplitude of 
the thermovoltage VI - V,. The voltages on the gates 
defining the second quantum point contact were adjusted 
so that its conductance was G = 1.5(2e2/h). Finally, we 
applied a very weak magnetic field (1SmT) to avoid 
detection of hot electrons on ballistic trajectories from 
the first to the second point contact. 

Figure 5(b) shows a plot of the measured thermovol- 
tage as a function of the voltage on the gates defining the 
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Figure 5. ( a )  Schematic representation of the device 
used to demonstrate quantum steps in the thermal 
conductance of a quantum point contact, using another 
point contact as a miniature thermometer. The main 
channel is 0.4pm wide. ( b )  Measured conductance and 
RMS value of the second harmonic component of the 
voltage V ,  - V, as a function of the  gate voltage defining 
the point contact in the main channel boundarj, at a 
lattice temperature of 1.4 K and an alternating current of 
RMS amplitude 0.6pA. The gates defining the other point 
contact were kept at -1.4V. so that its conductance is 
G = l  .5(2e2/h).  

point contact in the channel boundary, for a channel 
current of 0.6pA (RMS value). A sequence of plateaux is 
clearly visible, lining up with the quantized conductance 
plateaux of the point contact. Since the measured ther- 
movoltage is directly proportional to 67: which in turn is 
proportional to the heat flow Q through the point 
contact, this result is a demonstration of the expected 
quantum plateaux in the thermal conductance 
K I -Q/AT at zero net current [cf (611. We have verified 
that the second-harmonic thermovoltage signal at  fixed 
gate voltages is proportional to 12, as expected. Let us 
now see whether the magnitude of the effect can be 
accounted for as well. 

8220 

To estimate the temperature increase 6T in the region 
behind the point contact, we write the heat balance for 
that region of area A (valid if ST << AT) 

(27) KAT = c,AST/r,. 

We assume that A equals the square of the diffusion 
length (Dr,)”’ - lOpm, so that T, drops out of (27). 
On inserting the Wiedemann-Franz approximation 
K % L,TG, with G = N(2e2/h), and using the expression 
for the heat capacity per unit area given in the previous 
subsection (with n, = EFm/rrh2), we find 

6T h 
- % N - .  
AT m D  

In the experiment D = 1.4m2s-’, so that at  the N = I 
plateau in the conductance, we have ~ T / A T  
% 1.2 x The experimental curve in figure 5(b) was 
obtained at  a current density in the main channel of 
I/Wch = I.2Am-’, nearly equal to that used in the 
thermopower experiment shown in figure q b ) .  The ana- 
lysis of the latter data indicated that AT % 2K at this 
current density. Consequently, 6T % 2mK. The point 
contact used as a thermometer (adjusted to 
G = 1.5(2e2/h)) has S% -2OpVK-’ (see subsection 2.3), 
so that we finally obtain Vl - V, xz -0.05pV. The 
measured value is larger (cf the first plateau in figure 5(b)), 
but only by a factor of two. All approximations con- 
sidered, this is quite satisfactory. 

3.3. Peltier effect 

In this subsection we present preliminary results of an 
experiment designed to observe the quantum oscillations 
in the Peltier coefficient n of a quantum point contact. 
The geometry of the experiment is shown schematically 
in figure 6(a). A main channel, defined by split gates, is 
separated in two parts by a barrier containing a point 
contact. A positive current I passed through this point 
contact is accompanied by a negative Peltier heat flux 
Q = nl, giving rise to a (steady state) temperature rise 6T 
in the upper part of the channel, and to a temperature 
drop 67’ in the lower half. These temperature changes of 
the electron gas can be detected by measuring the 
thermovoltages across additional point contacts in the 
channel boundaries-at least in principle. 

One complication is that a total power 1’/G is 
dissipated due to the finite conductance G of the 
quantum point contact in the channel. This gives rise to a 
temperature rise on both sides of the point contact. The 
dissipated power is not equally distributed among the 
ZDEG regions on either side, and it is precisely this 
imbalance which corresponds to the Peltier heat flow Ill. 
We wish to detect only the temperature changes k 6 T  
associated with the Peltier heat flow. This is accom- 
plished by using an AC current, and a lock-in detector 
tuned to the fundamental frequency to measure the 
components linear in I of the thermovoltages (VI - V,) 
and (V, - V4). The output voltage of the lock-in detector 
is divided by the current, to obtain a signal linearly 
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Figure 6. ( a )  Schematic representation of the device 
used to demonstrate quantum oscillations in the Peltier 
coefficient of a quantum point contact. Arrows indicate 
direction of positive flow. The main channel is 4pm wide, 
and the distance between the pairs of point contacts in its 
boundaries is 20pm. ( b )  Measured conductance and 
thermovoltage - ( V ,  - V,) divided by the current I as a 
function of the voltage on gate B. defining the point 
contact in the channel. The lattice temperature is 1.6 K 
and the current is about 0.1 pA near G=2ez/h. Gates 
defining point contacts 1 and 3 were adjusted so that 
their conductance was G = l  .5(2e2/h).  Gates A and C 
were unconnected. 

proportional to the Peltier coefficient n of the point 
contact in the channel. This signal, measured as a 
function of the voltage on the gates defining that point 
contact, should exhibit quantum oscillations, similar to 
those seen in the thermopower S .  

Unfortunately, our present sample design does not 
allow us to do this without also affecting the thermo- 
power of the point contacts used as thermometers. In 
order to minimize this parasitic effect, we have scanned 
only one of the gates (labelled B in figure 6(a)), and have 
left the adjacent gates (A and C), which define the 
reference point contacts, unconnected. The effect of gate 
A on the remaining two thermometer point contacts is 

' 
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negligible. A result obtained in this way (at I - 0.1 PA 
and a t  T =  1.6 K) is plotted in figure 6(b), together with a 
trace of conductance versus gate voltage for the point 
contact in the channel. 

Oscillations in -(VI - VJI are clearly visible, of 
amplitude up to - 4 V A - '  and with maxima aligned 
with the steps between conductance plateaux. We inter- 
pret this signal as evidence for the oscillations in the 
Peltier coefficient n (see below). However, the oscilla- 
tions appear to be superimposed on a much larger 
negative background signal. This signal (which we veri- 
fied to be ohmic) is attributed to a series resistance 
associated with the fact that gates A and C had to be 
left unconnected, as mentioned above. The sum of the 
contact resistance at  the channel exit (estimated 
at (h/2eZ#n/2k, Wch) % 3021) and the spreading resist- 
ance associated with current flowing to the wide 2DEG 
regions of width W,,, % 500pm (estimated at 
n-'p In(W,,,./WJ N 300)  is about 6021, which is of 
about the correct magnitude to be able to account for the 
background in figure 6(b). A new set of samples, designed 
to avoid this background signal, are currently being 
fabricated. (Note added in proof Using these samples we 
have indeed been able to observe the quantum oscillation 
in Il without such a background signal C191.1 

Let us now discuss the amplitude ofthe oscillations in 
figure 6(b). To estimate 67: we use again the heat balance 
equation, and find 

Using the Onsager relation Il = S7: the estimated value 
S s= -2OpVK-' for a quantum point contact adjusted 
to G = 1.5(2e2/h), and T = 1.65K, we deduce 
ST/l z 104KA-' .  The resulting tbermovoltage across 
one of the thermometer point contacts (adjusted to 
G = 1.5(2e2/h) as well), normalized by I ,  is about 
0.3 V A-'. This is ten times smaller than the experiment- 
ally observed amplitude of the corresponding oscillation 
in figure 6(b). The origin of this discrepancy is not 
understood. 

4. Conclusions 

In conclusion, we have reviewed the theory of the 
thermo-electric effects in a quantum point contact, and 
our experiments on the quantum oscillations in the 
thermopower. New data have been presented that-for 
the first time-show evidence for the quantum steps in 
the thermal conductance, and the quantum oscillations 
in the Peltier coefficient. Our new experiments exploit 
additional quantum point contacts as miniature thermo- 
meters. We have used this technique as well in an 
experimental study of the effect of electron-electron 
scattering on the ballistic mean free path [IS]. The 
results for the thermo-electric transport coefficients pre- 
sented here compare reasonably well with the theoretical 
predictions. Further experiments as well as a more 
reliable quantitative analysis would he desirable. 
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