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Thermopower oscillations of a quantum-point contact
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(Received 30 October 1990; revised manuscript received 25 March 1991)

Oscillations in the thermopower of a quantum-point constriction in the absence and presence of a
magnetic field are discussed.

S(p, 8)=

In addition to the quantized conductance steps
discovered by van Wees et al. ' and Wharam et a/. in
split-gate constrictions of a two-dimensional electron gas
(2DEG), Molenkamp et al. reported very recently on os-
cillations in the transverse voltage of a conducting chan-
nel in a high-mobility 2DEG. They related these oscilla-
tions to the thermopower of a quantum-point contact.

On the theoretical side, while the electrical properties
of quantum-point contacts have received wide in-
terest, ' much less attention has been paid so far to the
analysis of the thermal and thermoelectric properties of
such systems.

'

Streda, ' using an approach that goes back to work by
Sivan and Irnry, ' outlines a calculation of the thermo-
power oscillations of a ballistic quantum-point contact as
the number of one-dimensional subbands at the point
contact is changed. He assumes a transverse parabolic
confining potential, a longitudinal transmission coefticient
through the constriction that is a step function of energy,
and zero magnetic field.

However, as pointed out by Buttiker, ' since constric-
tions in the experiments are usually electrostatically in-
duced, with a pair of split gates, the confining potential
must be a smooth function of the coordinates in every
direction, and consequently the bottleneck of the con-
striction forms a saddle.

The aim of the present work is to analyze the thermo-
power of a quantum-point contact for the realistic case of
a saddle-point constriction, give simple criteria for its ob-
servability, and study the effect of a magnetic field per-
pendicular to the 2DEG.

The linear response expressions for the chemical poten-
tial (p) and temperature (0) dependent two-terminal con-
ductance G(p, 8) and thermopower S(p, , 8) for transport
from one equilibrium electron reservoir to another, along
a multichannel lead are given by'

T

G(p, 8)= g f dE — T, (E),h, . 0 dE
(1)

1 Li(P, 8)
eO Lo(p, 8)

with E; being the transverse energy associated with the
ith channel in the lead, T; the transmission probability
from all channels into channel i,
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f the Fermi-Dirac distribution function, and e the elec-
tronic charge (e = —~e~). The sum over i runs over all oc-
cupied channels. The model used for the derivation of
Eqs. (1) and (2) assumes that the thermalization of elec-
trons, by inelastic scattering, and the corresponding Joule
heating occurs only in the outside reservoirs and not in
the system itself.

It is already possible to make a few qualitative con-
siderations about G(p, 8) and S(p, 8) from the general
expressions (1) and (2), for the case of transmission about
a quantum-point contact. In the case of a lead which is
nonuniform along the direction of current How (as is the
case for a realistic constriction) the transmission
coeKcient T; is changed by unity within a finite energy
range E .

Accordingly a schematic drawing of the different con-
tributions to the integrand of Eq. (2) is shown in Fig. 1.

g J dE — T, (E)
o dE ' k~0B

g f dE — T(E) FIG. 1. Schematic drawing of the integrand in Eq. (2) which
defines the thermopower.
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b,E )max(E, kiiO) . (4)

These qualitative arguments can be put on a more firm
basis in the low-limit temperature k&O «E . It is then
permissible to expand the transmission coefficient T;
around p, in Eqs. (1) and (2), with the following result:

2e
G(p, O) = „gT;(p),

I

The parameters were chosen such that AE &E &k&O
where AE is the transverse subband splitting.

Taking into account the odd-parity character of the
factor —(df IdE)(E —p)/k~0 (with respect to p), clear-
ly the result is essentially zero if ~p E;—~

)E I2, with a
maximum contribution when p=E; . It should be ex-
pected as a consequence that the thermopower of a
quantum-point constriction will have oscillations as func-
tion of p, with peak values when p=E; and a width of
EL

A similar analysis for the case AE &k~0&E gives
again an oscillating thermopower as function of p, with
peak values when p=E; but a width of a few k&O. '

In accordance with these considerations the condition
for the observation of well-pronounced oscillations in the
thermopower of a quantum-point contact is approximate-
ly given by

general, with no assumptions about the particular
geometry of the quantum-point contact, in order to make
a quantitative calculation of the thermopower of a
quantum-point constriction, a model should be adopted
for the transmission coefficient T; [or equivalently, for
the constriction potential V(x,y)].

As mentioned above, a realistic quantum-point contact
may be modeled by a constriction that close to its
bottleneck forms a saddle; expanding the constriction po-
tential around its saddle point, '

V(x,y)= V0 —
—,'mco x +—'mco2y2, (8)

where x and y correspond to the longitudinal and trans-
verse directions, respectively, co and co are convenient
parametrizations of the respective curvatures, and V0
refers to the value of the constriction potential at the sad-
dle point.

Fortunately the quantum-mechanical problem of
transmission and reAection at the constriction potential
described by Eq. (8) can be exactly solved without's and
with'9 a magnetic field (perpendicular to the x-y plane).

According to these results, the transmission probability
at the saddle is given by

T, =5,-
1

~J IJ —
C,.1+e

ka ~'
S(p Q~)= (k Q~)

e 3

dT;(E)
dE

g T;(p)

where

E hE (i+——,')—
VD

E, . —
1

and

E —E —Vi 0

EL (10)

ka ~' d
e 3 dE

(k~O) [ lnG(E, O)]~ (6b) gE T [(f14+4 2 2 )1/2+ ~2]1/2
v'2 X

As it is clear from Eqs. (6a) and (6b), in order to obtain
a large thermopower, one needs a transmission coefficient
[and consequently, according to (5), a zero-temperature
electrical conductance] which varies rapidly with energy.
For a transmission coefficient as represented in Fig. 1,
S(p, 8) will have oscillations as function of p, with peak
values when p=E; given by

dT;(E)
dEk~ „2 E =E

S(p=E, 0)= (k 0")
i+T;(E, )

Two remarks are in order concerning the result given
by (7).

(i) The peak value of the thermopower is linear-
temperature dependent. This should be contrasted with
the temperature-independent peak value obtained using a
transmission coefficient that is a step-dependent function
of energy. '

(ii) Because the thermopower is different from zero
only in the transition regions between two plateaus of the
transmission coefficient (see Fig. 1), and this region is par-
ticularly sensitive to the real shape of the constriction po-
tential, no "universal" (that is, sample-independent) peak
values of the thermopower should be expected.

While the discussion until now has been completely
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FIG. 2. Resistence (left scale) and thermopower (right scale)
as function of chemical potential p for a ratio of coy/cu„=3.
Full line, k&O/Ace =0.5; dashed line, k&O/A'~ =0.25; dotted
line, k&O/Ace =0.1.
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FIG. 3. Resistence (left scale) and thermopower (right scale)
as function of p, in presence of magnetic field: full line,
co, /co =0; dashed line, co, /co = 1; dotted line, co, /co =2. The
ratio co„/co =3 and k&O/A'co =0.1.

FIG. 4. Magnetic-field-induced thermopower oscillations for
co~/co =1 and k&O/A'co„=0. 25. Full line, co, /co =0; dashed
line, co, /co = 1; dotted line ~, /co =2.

[(~4+4 2 2)1/2 ~2jl/21
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In the limit of zero magnetic field AE —+%co and
L

coy an
E ~%co„/2, while when co, &&co„and co~, bE ~Aco„

Land E ~fico, co /2co, . Using (9)—(14) Biittiker analyzed
the conditions for the occurrence of well-pronounced
steps in the zero-temperature two-terminal conductance,
and the accuracy of its quantization.

The numerical evaluation of Eqs. (1) and (2), with the
saddle-point constriction transmission as given by (9) pro-
duces the results shown in Figs. 2 —4. The two-terminal
zero magnetic-field resistance (left scale) and thermo-
power (right scale) are shown in Fig. 2. The parameters
are chosen such that condition (4) is fulfilled and conse-
quently pronounced oscillations in the thermopower are
obtained.

As already mentioned, the temperature dependence of
the oscillations (width and peak value) is explained by the
low-temperature expansion (6). It is interesting to point
out that for the maximum temperature shown in Fig. 2
(k~O/fico„=0. 5), while the resistance shows weak indi-
cation of quantization, it is still possible to have well-
defined oscillations in the thermopower.

We display in Fig. 3 the dependence of the resistance
and thermopower on magnetic field. As discussed previ-
ously, the onset of each oscillation in the therrnopower is
related to the opening of a new channel for conduction.
Because AE is an increasing function of B, the oscilla-

tions spread apart for increasing values of B.
The parameters chosen in Fig. 3 correspond to a situa-

tion where already for B =0 the thermopower has pro-
nounced oscillations (the essential effect of BWO being
that of changing the distance between two successive os-
cillations). However, an interesting situation arises in
connection with condition (4), because since bE is an in-
creasing function of B, it is possible that
b,ET(B =0)(max(E, kiiO~) while bE (BWO)

L& max(E, kii 0), with a crossover from a poor-
oscillation regime to a well-developed oscillation regime.

Such an example of magnetic-field-induced oscillation
is shown in Fig. 4. For ~~ =co„and k~O/Au~ =0.25 the
zero-field thermopower shows only an indication of oscil-
latory behavior. However, when cu, =co the oscillations
begin to grow and when co, =2' they are clearly visible.
For co, =2coz, bE /iiico =2 and condition (4) is wellT

fulfilled
In summary, we have calculated the thermopower of a

quantum-point constriction. Our results show that the
thermopower shows oscillations as a function of chemical
potential p, each time a new quantum channel is open for
conduction. The amplitude of the oscillations is ternpera-
ture dependent. Finally, the possibility of magnetic-
field-induced oscillations is suggested.
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