
Between Superexchange and Hopping: An Intermediate Charge-
Transfer Mechanism in Poly(A)-Poly(T) DNA Hairpins
Nicolas Renaud,* Yuri A. Berlin, Frederick D. Lewis, and Mark A. Ratner

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States

*S Supporting Information

ABSTRACT: We developed a model for hole migration along relatively short
DNA hairpins with fewer that seven adenine (A):thymine (T) base pairs. The
model was used to simulate hole migration along poly(A)-poly(T) sequences
with a particular emphasis on the impact of partial hole localization on the
different rate processes. The simulations, performed within the framework of the
stochastic surrogate Hamiltonian approach, give values for the arrival rate in
good agreement with experimental data. Theoretical results obtained for hairpins
with fewer than three A:T base pairs suggest that hole transfer along short
hairpins occurs via superexchange. This mechanism is characterized by the
exponential distance dependence of the arrival rate on the donor/acceptor
distance, ka ≃ e−βR, with β = 0.9 Å−1. For longer systems, up to six A:T pairs, the distance dependence follows a power law ka ≃
R−η with η = 2. Despite this seemingly clear signature of unbiased hopping, our simulations show the complete delocalization of
the hole density along the entire hairpin. According to our analysis, the hole transfer along relatively long sequences may proceed
through a mechanism which is distinct from both coherent single-step superexchange and incoherent multistep hopping. The
criterion for the validity of this mechanism intermediate between superexchange and hopping is proposed. The impact of partial
localization on the rate of hole transfer between neighboring A bases was also investigated.

■ INTRODUCTION

The mechanism and dynamics of charge transfer in DNA
continue to attract a lot of interest1−4 due to its relevance to
oxidative damage5,6 and its potential application in molecular
electronics7,8 and biosensing techniques.9,10 With a few
exceptions,11−15 most studies have focused on the migration
of positive charges (holes). The propagation of these charge
carriers was recently probed using time-resolved pump−probe
spectroscopy. For this purpose, the hairpins are capped with a
hole donor (Sa) at one end and a hole acceptor (Sb) at the
other. Stilbenecarboxamide/stilbenediether16,17 and naphthali-
mide/phenothiazine18,19 are the most commonly used
chromophores due to their favorable electronic structure. A
detailed description of the femtosecond broadband pump−
probe spectroscopy setup used by Lewis et al. can be found
elsewhere.20 Photoexcitation of the hole donor by a pump
wavelength (333/355 nm) induces a one electron transition to
the LUMO, thus generating a hole on the HOMO. This hole
can propagate along the hairpin and eventually reach the hole
acceptor where it can be detected using a femtosecond white-
light continuum (300−755 nm).
The sequence of base pairs inside the DNA hairpin affects

significantly the hole transfer from Sa to Sb.
18,21−24 Homoge-

neous sequences containing only guanine-cytosine (G:C) base
pairs exhibit relatively high hole mobility25−29 due to larger
electronic coupling of the guanines30 and the lower ionization
potential of these bases as compared to A bases.30−33 By
contrast, sequences containing only adenine-thymine (A:T)
base pairs show a smaller hole mobility34 mainly mediated by

the adenine tract.35 Insertion of a single28,36 or several
consecutive G:C27 base pairs in a poly(A)-poly(T) hairpin
increases significantly the mobility of holes. This effect depends
on the position of the G:C base pairs in the sequence, and the
most significant changes in transport properties have been
observed when the G:C base pair is located at the end of the
sequence. It should also be noted that the introduction of
modified base pairs, such as 7-deazaadenines18,37 or locked
nucleic acids,38 has been shown to dramatically change the
charge-transfer properties of short hairpins.
Considerable progress in time-resolved spectroscopic

techniques makes it possible to characterize the overall process
of hole transfer across DNA hairpins in sufficient detail.
However the mechanism by which the hole propagates along
the hairpins is still under discussion. Superexchange is thought
to be responsible for charge transfer along very short hairpins
with 1−3 base pairs. When charge transfer is dominated by
superexchange, the hole directly tunnels from the donor to the
acceptor using the base pairs as virtual states.39−42 As a
consequence the charge transfer rate decreases with the
distance, R, following an exponential law:3,22,34,43

= β−k R k( ) e R
a 0 (1)

with β ∼ 1.0 Å−1 is the falloff parameter44,45 and k0 is a pre-
exponential scaling factor. For longer hairpins however a
transition from superexchange to incoherent hopping is
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assumed to occur, and the latter mechanism becomes
dominant.22,46−49 Incoherent hopping along the stack contain-
ing A:T or G:C base pair separated by an average distance R0
leads to a weak distance dependence of ka(R).

22,25,50 In this
case the arrival rate can be described by a power law39,49,51−54

= η−k R k R R( ) ( / )a 0 0 (2)

or by a rational function55,56

=
+

k R
a

bR
( )

1a (3)

where the coefficients a and b depend on the rates of the
elementary steps involved in the charge-transfer process. It is
worth mentioning that in the case of incoherent hopping in
DNA, the hole is often assumed to be confined to a single base
pair due to the important static and dynamic disorder in the
system. The hole then propagates between neighboring sites by
a series of hops. The nature of these hops remains the subject
of vivid debates mainly because of the poor understanding of
the charge localization/delocalization phenomenon in DNA.
If the hole density is extended over several base pairs as a

result of polaron formation,57−60 hole propagation can be
considered as sequential phonon-assisted polaron hopping61 or
in terms of transient delocalized domains.62 Such delocalization
of the hole density is to be expected due to the interactions
between neighboring base pairs. However polarization effects of
the surroundings,63 internal reorganization of the base pairs,64

and dephasing caused by the geometrical fluctuations of the
DNA hairpins are thought to significantly reduce this charge
delocalization. As a consequence, the idea of charge
delocalization in DNA hairpins is often rejected or at least
limited to a few pairs only.65

Many time-dependent quantum mechanical studies have
been performed to understand the crossover between tunneling
and hopping regime and its relation to the charge localization/
delocalization phenomenon.23,24,40,42,65,66 In these studies, the
interactions of the hole with its environment were modeled
using either the time-dependent self-consistent field ap-
proach,23,40,66 the Su−Schrieffer−Heeger model,65 or uncorre-
lated fluctuations.24,42 To simplify the analysis, it was assumed
that with the exception of multiple guanine units, the charge
relaxation inside each individual base is slower that the rate of
transition to the neighboring base, so that for each base pair
only a single quantum state is involved in the migration
process.40,67−69 Molecular Dynamics (MD) simulations
coupled with standard electronic structure calculations were
employed to compute the energy of these states as well as the
electronic coupling between pairs.42,70 These calculations have
revealed large temporal fluctuations of these quantities induced
by geometrical deformations of the hairpins.42,66,71,72 Note that
this dynamical disorder is beneficial for hole transfer since it
helps a charge carrier to overcome the barrier formed by the
electrostatic interactions between the propagating hole and the
anion of the hole donor.38,42,66,73 Although in the case of short
hairpins containing 1−2 base pairs, calculations based on the
approach discussed above give results consistent with
experimental findings, for longer hairpins only qualitative
agreement between theory and experiment has been attained.
The poor quantitative agreement in the latter case was
attributed to the fact that the theoretical models proposed so
far ignore relaxation of the system geometry42,64 and the partial
localization of the hole density in DNA sequences.74 To verify
the validity of this explanation, one should take into account

decoherence and relaxation in the model used to simulate the
charge motion along DNA hairpins.
Several theories have been developed to include decoherence

and relaxation while keeping a correct description of the
coherent phenomenon.75 The usual Redfield and Lindblad
approaches are commonly used for this purpose.76,77 Both of
these historic approaches are nowadays often replaced by
analytical78 or numerical79,80 non-Markovian approaches that
avoid the perturbative treatment of the system/bath
interactions. Here the propagation of the hole density is
simulated using the stochastic surrogate Hamiltonian (SSH)
approach.81−83 In this framework, a few bath modes are
explicitly treated in the total Hamiltonian.84,85 The Liouville
equation is then solved for the extended system, modeling the
hairpin together with these few bath modes. Quantum jumps
are performed in the bath manifold to limit the computational
cost of the SSH approach.83 Since quantum jumps are
stochastic events and the bath spectral density is sampled
randomly, the SSH approach has clear statistical features. For
this reason the Liouville equation must be solved a few hundred
times to converge to the final dynamics. This allows the
accurate simulation of the dynamics of an open quantum
systems in the nanosecond time range and at affordable
computational cost.83,86

The computational studies discussed in this paper deal with
the coherent motion of the hole along poly(A)-poly(T)
sequences containing 1−6 A:T base pairs (referred to 1, 2, ...,
6, respectively) accompanied by the incoherent processes
caused by the interaction of the propagating charge with the
molecular vibration modes of the system. The coherent
propagation of the hole is described by a tight-binding
Hamiltonian (see, e.g., ref 40), while the environment of the
propagating charge is assumed to include both classical and
quantum modes responsible for the incoherent dynamics. The
classical modes correspond to large deformations of the hairpin
associated with the tilt, roll motion of base pairs, and the
dynamics of other degrees of freedom that define π-stack
geometry. Such modes serve as the origin of dynamic disorder
that randomly modifies the parameters of the electronic
Hamiltonian. This dynamical disorder dephases the coherent
propagation, but does not cause energy relaxation. The
description of the latter process requires the consideration of
the quantum modes related to the intramolecular vibrations of
the A:T pairs in the DNA hairpins. The hole−phonon
interactions are modeled within the SSH approach and are
the source of energy dissipation in our calculations. Due to the
presence of localizing states in our model, the hole density is
partially localized during the coherent propagation along the
stack of A:T pairs. This partial localization of the moving hole is
distinct from the temporary trapping of charge carriers in the
course of hopping. The traditional hopping transport
mechanism suggests the localization of all hole density (rather
than its part) on a single A base.
Proton transfer necessary to the formation of the charged

radical observed experimentally is not included in our model.
Charge and proton transfers are assumed to occur sequentially,
and the possibility of proton-couple-electron transfer87,88 is not
explored in this article. It should also be mentioned that our
model does not take into account the reorganization of the
solvent around the hairpin during the hole propagation and the
charge localization effects induced by the polar surrounding.63

Consequently our analysis is only valid for relatively short
hairpins for which hole propagation from Sa to Sb is faster than
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the time needed for the solvent to reorganize. For longer
hairpins, such localization effects are not negligible and require
special consideration.57

■ MODEL
Hamiltonian. The model used to study the propagation of

the photogenerated hole along a short poly(A)-poly(T) hairpin
with N nucleobases is schematically shown in Figure 1. In this
model, the hole donor is represented by a single quantum state
|Sa⟩. The n-th base pair (n = 1, 2, ..., N) in the sequence is
modeled by a conducting state |An⟩ and a hole localized state
|tn⟩. Similarly, two states are used to characterize the hole
acceptor. These include an excited state of the acceptor cation
|Sb*⟩ and the cation ground state |Sb⟩. Within the tight-binding
approximation, the model Hamiltonian can be written as

∑

∑

∑

α

= | ⟩⟨ | + | ⟩⟨ | + | *⟩⟨ *| + | ⟩⟨ |

+ | ⟩⟨ | + | ⟩⟨ *|

+ + − | ⟩⟨ | + | ⟩⟨ |

=
*

=

−

+

=
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i

N
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i

N
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i

N

i i i S b b

S
1

1

1

1

( 1)

1
loc

a b

b
(4)

In eq 4 |Sa⟩ is the initial state of the hole density with an
energy ESa. All the other energies involved in the model are

counted from ESa. Therefore we can set this reference energy
equal to zero. The measure of the electronic coupling between
various sites in our model is the transfer integrals ca, cb, and α.
The first quantity ca describes the coupling between the donor
and the first hairpin site. The coupling between the last A:T
base pair and the hole acceptor is given by the second transfer
integral, cb, while α denotes a coupling between neighboring
A:T bases in the poly(A)-poly(T) sequence. The state |A1⟩
corresponds to a the situation where a hole is located on the
first A base, thus generating an anion on the donor site. This
ion pair is symbolized as Sa

−/A1
+. The hole propagates along the

hairpin via the states |An⟩ forming the intermediate ion pairs
Sa
−/An

+ and eventually reaches the excited state of the acceptor,
|Sb*⟩, that can subsequently undergo relaxation to the ground

state |Sb⟩. Shallow localizing states, |tn⟩, are also incorporated in
our model. Their energies are smaller than the energy of the
|An⟩ state by the value of the localization energy, Eloc, which is
the only variable parameter in our simulations. Other
parameters of the model were either estimated or taken from
the literature as explained in the next section.

Parameters. Following recent calculations,42 the values of
the energies En for a particular A site can be estimated using the
Weller-like relation:

= − − + − Δν
− +E E E S A EIP EA ( / )n h S c a nA solva (5)

Here, IPA = 7.35 eV is the ionization potential of the
adenine,30,33 EASa = 1.08 eV is the electron affinity of the hole
donor,42 Ehν = 3.35 eV its excitation energy,34 Ec(Sa

−/An
+) is the

electrostatic interactions between the negative charge located
on Sa and the propagating hole, and ΔEsolv = 0.2 eV is the
solvation energy.42 With Ec(Sa

−/An
+) calculated within a point

charge approximation and the above-mentioned values of the
other parameters, eq 5 yields values of the on-site energies
ranging from E1 = 0.20 eV up to E6 = 1.92 eV.42

To take into account for the possibility of single-step
superexchange between Sa and Sb, the energy of the acceptor
excited state, |Sb*⟩, is chosen to be in resonance with the hole
donor (i.e., ESb* = 0.0 eV) . The energy of the cationic ground
state |Sb⟩ is determined following eq 5 using the ionization
potential of the hole acceptor. Gas-phase calculation gives the
ionization potential of the hole acceptor: IPSb = 6.35 eV.
However this value is expected to be reduced by ∼0.7 eV in
solution.30 The site energy of |Sb⟩ should in principle depend
on the length of the hairpin because of the Coulombic potential
term in eq 5. However, for our calculations not to be
dominated by the energetic of the hole acceptor, we fix the
energy of |Sb⟩ equal to the value ESb = −0.18 eV obtained by
averaging over the lengths of various poly(A)-poly(T) hairpins.
Due to the thermal deformation of the DNA strands, the site

energies are subjected to random Gaussian fluctuations with a
standard deviation of 0.15 eV and the average time of τE = 0.1
ps.42 On the basis of earlier computational results42,70 a weak
average coupling of ca = 5 meV is assumed between the hole
donor and the first base pair. Larger values of the transfer

Figure 1. Schematic representation of the model used to study the hole propagation across the hairpin 6 (a) and parameters of the model (b).
Starting from the hole donor |Sa,⟩ the hole propagates on the states |An⟩. The hole density can be partially localized on the |tn⟩ states and possbily
thermally activated later on. The hole density can eventually reach the hole acceptor excited state |Sb*⟩ before the final localization of the hole on the
ground state of acceptor |Sb⟩ occurs.
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integrals α = 50 meV and cb = 20 meV characterize the
electronic coupling between neighboring adenines and between
the last A:T base pair and the hole acceptor, respectively. These
couplings are also subjected to strong fluctuations described by
random Gaussian distributions with a standard deviation of 50
meV and the average time of τc = 0.5 ps.42 These random
fluctuations of the site energies and transfer integrals model
uncorrelated classical modes which dephase the coherent
charge propagation without inducing energy relaxation.
The impact of partial localization on the hole propagation

strongly depends on the value of the localization energy, Eloc.
Certainly, this energy depends on the mechanism of local-
ization considered. The geometry relaxation of a given base pair
upon charging is one of the principal localization process. The
corresponding localization energy can be estimated by
comparing the vertical and adiabatic ionization potential of
the adenine. This leads to Eloc values ranging from 0.18 to 0.36
eV.64 Other mechanisms responsible of partial localization
includes the formation of a delocalized triplet with a typical
localization energy of a few meV.74 Therefore several values of
the localization energy ranging from 50 to 250 meV were
employed in our calculations.

■ HOLE−PHONON INTERACTION
The propagation of the hole across the poly(A)-poly(T)
hairpin is computed using the Hamiltonian given by eq 4 and
the SSH approach to take into account relaxation and
decoherence. Similar to the methods developed to simulate
the evolution of open quantum systems,75 the SSH approach
considers the Hamiltonian as the sum of three terms:

= + +S B SB (6)

where S is the Hamiltonian of the system described by eq 4,

B stands for the Hamiltonian of the bath, and SB denotes
the interaction between the system and the bath. The bath is
modeled by an ensemble of M noninteracting two level
systems, or quantum modes. The corresponding bath
Hamiltonian is defined by

∑ σ σω=
=

†

i

M

i i iB
1 (7)

where ωi is the energy of the i-th mode and σi
† (σi) the creation

(annihilation) operator. This fully quantum treatment of the
bath modes allows for a rather accurate simulation of system/
bath entanglement and energy relaxation.81

The Hamiltonian describing the interactions between the
system and the environment can be written as

∑ σ σ
ω

= ⊗ +
=

†

M
( )

( )S
i

M
i

i iSB
1 (8)

where S is the relaxation pathway matrix,83 ω( )i the spectral
density of the bath, evaluated at the bath-mode energy ωi, and
M the number of bath modes explicitly accounted for in the
Hamiltonian. According to our model (see Figure 1), partial
localization of positive charge can be viewed as the transition
from the |Ai⟩ to the |ti⟩ state as well as the transition from |Sb*⟩
to |Sb⟩. Then the relaxation matrix reads:

∑= | *⟩⟨ | + | ⟩⟨ | +
=

S S A t h c( ) . .b b
i

N

i iS
1 (9)

The Hamiltonian SB introduces indirect coupling via the
bath modes between the |Ai⟩ and |ti⟩ states as well as between
excited state of the hole acceptor |Sb*⟩ and its ground state |Sb⟩.
Consequently localization occurs only on a given molecule,
either a base pair or the hole acceptor. Hence this process is
assisted by the intramolecular vibration modes of the
molecules. To model the phonon bath formed by these
modes, the bath spectral density is defined as a super-ohmic
distribution:89,90

ω λ ω ω= ω ω−( ) ( / ) ec
2 ( / )c

2

(10)

with the cutoff energy, ωc, set to ωc = 0.15 eV to in order to fit
eq 10 to the intramolecular vibration spectrum of the adenine
molecules.91 The inner-shell reorganization energy, λ, quantifies

Figure 2. Hole propagation along hairpin 1. Temporal evolution of the hole density over the period of 5 ps. The temporal evolution of hole
population on the donor site, on the excited and ground states of the acceptor as well as on the adenine sites are shown by different colors. (b)
Snapshots of the hole density at different times.
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interactions between the hole and the molecular vibrations
modes. For A:T base pairs, the hole−phonon coupling ranges
from 1 to 250 meV depending on the vibrational mode
considered.92 The estimations of the internal reorganization
energy of the base pairs provide values close to 150 meV.64 To
describe these various hole−phonon interactions with a single
parameter, we set the reorganization energy equal to λ = 100
meV. However variations of λ by a factor of 2 do not change
significantly our results. Using the spectral density defined by
eq 10 leads to strong hole−phonon interactions for the
breathing modes of the molecules around 0.15 eV and weaker
interactions for the low- and high-frequency modes.92

Once the three components of the total Hamiltonian are
properly defined, the propagation of the density matrix, ρ(t), is
computed solving the Liouville equation:

ρ ρ= −
ℏ

t
t

i
t

d ( )
d

[ , ( )]
(11)

To simulate the evolution of the system for few picoseconds
at an affordable computational cost, only a few bath modes are
explicitly treated in eq 7. In addition quantum jumps are
introduced in the bath manifold.81,82 Each of these jumps reset
the reduced density matrix of one given mode to its thermal
state, removing a small amount of energy from the extended
system.83 Due to the random sampling of the bath spectral
density and the stochastic quantum jumps, the SSH approach is
a statistical treatment of the dynamics of an open quantum
system. Consequently the dynamics was computed 500 times
to converge toward the final temporal evolution. The initial
state of the dynamics is defined as

ρ ρ ρ= ⊗ T(0) (0) ( )S B (12)

where ρS(0) = |Sa⟩⟨Sa| and ρB(T) is a thermal state of the bath.
This nonentangled initial state supposes that the photo-
excitation of the system destroys pre-existing system/bath
entanglement. Once the dynamics is solved, the temporal
evolution of the hole density on the DNA hairpin is extracted
from the total density matrix by tracing out the bath modes:

ρ ρ=t Tr t( ) [ ( )]S B (13)

A more detailed description of the implementation of the
SSH approach as well as a brief description of the decoherence
and energy relaxation mechanisms induced by the system/bath
interactions can be found in Supporting Information (SI).

■ RESULTS AND DISCUSSIONS

Hole Dynamics. Figure 2a shows the temporal evolution of
the hole population along hairpin 1 at room temperature and in
the case of Eloc = 150 meV. As can be seen from this figure, a
fast charge transfer occurs from the hole donor, |Sa⟩ to the
excited state of the acceptor |Sb*⟩. This fast transfer is due to a
superexchange between these resonant states via the A base
acting as a small energy barrier. The data plotted in this figure
show that after 0.25 ps, 17% of the hole density has already
crossed this ultrashort DNA strand and has reached the excited
state of the hole acceptor. When reaching this excited state, the
hole undergoes an irreversible transition to the ground state
|Sb⟩. This localization process leads to a fast increase of the
population of |Sb⟩ that accounts for more than 60% of the hole
density after 5 ps. Due to the partial localization on the A base,
the population of the localized state, |t1⟩, slowly increases with
time and accumulates up to 25% of the hole density after 1 ps.
For longer times, the hole density is able to escape this shallow
trap by thermal activation. The latter process is responsible for
the slow decrease of the population of |t1⟩ evident from Figure
2a.
Snapshots of the hole density are represented in Figure 2b.

The subpicosecond transfer from the donor to the acceptor due
to single-step superexchange is clearly seen. The hole density
turns out to be completely delocalized over the entire system
(i.e., the hole donor, acceptor, and the AT base pair) after 0.5
ps, i.e., before irreversible localization of positive charge on the
acceptor ground state.
Figure 3a shows the propagation at the room temperature of

a photogenerated hole along hairpin 6 with a localization
energy of Eloc = 150 meV. Snapshots of the hole density are

Figure 3. Hole propagation along hairpin 6. (a) Temporal evolution of the hole density over the period of 10 ps. The temporal evolution of hole
population on the donor site, on the excited and ground states of the acceptor as well as on the adenine sites are shown by different colors. (b)
Snapshots of the hole density at different times which show the degree of hole delocalization at different times on the ps scale.
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represented in Figure 3b. After the photoexcitation, the hole is
rapidly injected from the |Sa⟩ to |A1⟩ where 40% of the
population is localized after only 0.1 ps. For this relatively long
hairpin, superexchange between the hole donor and acceptor
does not make a major contribution to the mechanism of hole
transfer. Consequently, the population of |Sb⟩ does not rapidly
increase as observed for hairpin 1. This can be expected since
the hole formed in hairpin 6 has to overcome a large Coulomb
potential to reach the hole acceptor. This latter process
becomes possible due to the dynamic disorder that creates
random resonances between the |Ai⟩ states, thus facilitating the
charge transport across the system.42 This fluctuation-gated
hole transfer is much slower than the superexchange mediated
transfer along hairpin 1, and the population of the |Sb⟩ states
increases only by fraction of a percent after 50 ps. Hence the
hole density is mainly localized on the A:T base pairs.
Furthermore our results show that 60% of the hole density is
partially localized on the |ti⟩ states after 5 ps. The hole
dynamics depicted in Figure 3 cannot be associated either with
superexchange or with the common hopping mechanism
described in the literature. The charge propagation along this
hairpin occurs via intermediate charge-transfer mechanism,
which is discussed and compared with other relevant theoretical
findings in the Charge-Transfer Mechanism section. This
intermediate charge-transfer mechanism is discussed and
compared with other models in this section of the manuscript.
As seen in Figure 3, a striking characteristic of this intermediate
mechanism is the delocalization of the charge density along the
entire hairpin. This delocalization, however, does not contradict
the oxidation of the base pairs observed in steady-state
experiments.21 The latter is obviously distinct from time-
resolved measurements that are the focus of this study.
Arrival Rate of Holes on the Acceptor Site. The hole

arrival rate at the hole acceptor, ka, and the charge separation
quantum yield, ΦCS, are the main observables used to quantify
hole transfer along stacked base pairs. Experimentally, these
two quantities are deduced from the time-dependent band
intensity ratio of the anion Sa

− and the cation Sb
+.27 Using our

simulations ka and ΦCS can be evaluated by fitting the calculated
population of |Sb⟩ with the rising exponential function:

ρ| ⟩⟨ | = Φ − −Tr S S t k t[ ( )] (1 exp( ))b b S CS a (14)

Fitting the population of the hole acceptor located at the end
of hairpin 1 with eq 14 leads to ka = 0.65 ps−1 and ΦCS = 0.87.
This very fast transfer rate and high quantum yield are in good
agreement with the recent experimental data which give ka =
0.58 ps−1 and ΦCS = 1.34 For hairpin 6, the similar fitting gives a
much smaller arrival rate, ka = 0.17 ns−1 and very low quantum
yield ΦCS = 0.09, which are again in good agreement with
experimental data (see Table 1). As it can be seen from this
table, the values of the arrival rate obtained with our approach
are in reasonable agreement with experiments for all the
hairpins studied. Although our predictions for the quantum
yield agrees with the experimental results for hairpin 1 and 6,
they underestimate ΦCS for all the other hairpins. It should be
mentioned however that the distance dependence of the
quantum yield obtained in the framework of our model was
found to be in close agreement with earlier experiments on the
so-called damage ratio.50 The latter quantity which is
proportional to ΦCS, decreases rapidly as the number of A:T
base pairs in the hairpins increases from 1 to 3 but does not
show any significant changes for longer sequences.

Many investigations suggest that the dependence of the
arrival rate on the number, N, of the A:T base pairs in the
sequence (and hence on the distance between hole and
acceptor R) might be important for the identification of the
mechanism governing hole transfer, see, e.g., refs 4, 39, 51, 52,
and 61. The distance dependence of the arrival rate obtained
for different values of the localization energy and for the case
where partial localization is ignored is shown in Figure 4. In this

figure R is expressed in terms of the number of the A:T base
pairs between these two sites. The values of ka as a function of
R deduced from our simulations can be approximated by the
function:

κ κ= +β η− −k R R R( ) e ( / )R
a 1 2 0 (15)

where κ1 and κ2 are scaling factors and R0 = 3.40 Å is the
distance between two neighboring A:T base pairs. Note that the

Table 1. Experimental and Theoretical Values of the Arrival
Rate and Charge Separation Quantum Yield for Hairpins 1−
6

theorya experimentb,c

seq. ΦCS ka 10
10 s−1 ΦCS ka 10

10 s−1

1 0.87 65.39 1.00 58.00
2 0.34 4.47 0.80 2.50
3 0.13 0.13 0.52 0.40
4 0.09 0.05 0.23 0.10
5 0.09 0.03 0.10 0.02
6 0.09 0.02 0.09 0.01

aTheoretical values were obtained assuming that Eloc = 150 meV.
bExperimental values for ΦCS were taken from ref 36. cExperimental
values for ka were taken from ref 35.

Figure 4. Hole arrival rate on the acceptor site, ka, obtained from our
simulations as a function of the number of A:T base pairs in hairpins
with the poly(A)-poly(T) sequence. Calculations were performed
without temporal localization (black curve), with the localization
energy equal to 150 meV (blue curve), 50 meV (green curve in the
insert) and 250 meV (red curve in the insert). Computational results
are shown by triangles and squares. Solid lines correspond to the
approximation of these results by eq 15. Dashed lines represent two
terms of eq 15. Purple dots are the experimental data taken from ref
35. The shaded area in the insert includes the experimental values of ka
reported in different publications.27,28,34−36
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incorporation of partial localization in the model of hole
transfer improves considerably the agreement between
theoretical and experimental results as follows from comparison
of black and blue solid lines with purple dots in Figure 4.
Fitting eq 15 to the results of our simulations, we found that

κ1 = 0.7 fs−1 and β = 0.9 Å−1 with both parameters being
independent of Eloc. The independence of κ1 and β to the
localization energy confirms that superexchange is responsible
for the hole transfer along short hairpins. During super-
exchange, the hole density is directly transferred from the
donor to the acceptor without visiting A:T sites that are used as
virtual states. Therefore the presence of trapping states along
the hairpin and the value of the localization energy are
irrelevant to this regime. The value of β obtained by this fit is
consistent with experimental data that gives β = 0.5−1.0
Å−1.93−95 This value is extremely sensitive to the difference
between the energy of the hole donor and the energy of the
base pair. Consequently changing the nature of the photo-
sensitizers or the base pair should significantly modify the value
of the falloff parameter.95

The exponent of the power law term in eq 15 deduced from
out results for long-range charge transfer (hairpins 3−6) was
found to be equal to η = 2, i.e., slightly larger that the
experimental value η = 1.5−1.7.51,96 In addition, it is evident
that variations of Eloc do not affect the value of the exponent η
but reduce the scaling factor κ2. According to the data
presented in Figure 4, the value of this parameter decreases
from 180 ns−1 in the absence of partial localization to 25 ns−1

for Eloc = 50 meV and becomes equal to 7 ns−1 for Eloc = 250
meV.
The formal similarity of eq 15 and the expression for ka

derived earlier67 to take into account the competition of hole
tunneling and thermal activation hopping implies that the
distance dependence of the arrival rate alone is insufficient for
making convincing conclusions about the mechanism of hole
migration in DNA hairpins. Indeed, eq 15 describes equally well
two distinct processes of charge transfer, namely tunneling of
holes competing with their hopping and the fluctuation-gated
motion of positive charges accompanied by partial localization
of charge density.
Rate of Hole Injection. Another important elementary

process involved in the mechanistic picture of hole transfer is
the injection rate of a positive charge onto the stack of base
pairs. Experimentally, the hole dynamics for stilbenediamide/
stilbenediether-capped hairpins with 1−7 intervening A:T base
pairs was deduced from the analysis of the fluorescence and
transient absorption data.28 In particular, the observed
picosecond and nanosecond fluorescent decays were assigned
to fast and slow hole injection processes.
Our model enables us to evaluate the characteristic times of

these decays and, hence, the fast and slow injection rates, ki
f and

ki
s, using the time evolution of hole population calculated for
the |Sa⟩ state. As seen in Figures 2 and 3, the hole population
on |Sa⟩ decreases biexponentially in time so that the following
relation is valid:

∑ρ| ⟩⟨ | = Φ
=

−Tr S S t[ ( )] ea a
n f s

i
n k t

S
,

i
n

(16)

where Φi
f and Φi

s are the quantum yield for the fast and slow
processes, respectively. The values of the injection rates and
quantum yields were deduced by fitting the temporal evolution
of |Sa⟩ with eq 16 and are presented in Table 2 along with
available experimental values.34 As can be seen from this table,

the injection quantum yields Φi
f and Φi

s obtained with our
approach are in good agreement with the experimental data;
however, our model overestimates the hole injection rates by 2
orders of magnitude as compared to experimental values
reported in ref 34. This may be a consequence of the limited
time resolution of the fluorescence decay measurements.
Subsequent reanalysis of the femtosecond transient absorption
data for Sa-linked hairpins suggests that hole injection occurs
within the first few picoseconds following laser excitation.28 It is
also possible that excitation directly populates a charge-transfer
state, thereby bypassing the hole injection process and leading
directly to the hole populations obtained by our model after ∼1
ps (see Figures 2 and 3).

Rate of Hole Transfer between Neighboring Base
Pairs. In addition to the rates of hole injection and arrival on
the acceptor site, the obtained numerical results also allow
estimations of the rate of positive charge transfer between
neighboring A:T base pairs. It should be emphasized again that
our simulations lead to a delocalization of the hole density
along the hairpin. Therefore, the hole transfer between two
adjacent base pairs considered in this section has nothing in
common with hopping. The latter requires a complete
localization of the hole density on a single site rather than
the partial localization of this density. A scheme illustrating the
method employed to evaluate the rate, kn→n+1, for hole transfer
between the n-th and the (n + 1)-th base pairs is shown in
Figure 5 using hairpin 3 as an example.
To compute the elementary transfer rate, kn→n+1, between the

n-th and (n +1)-th A:T base pair, the hole population of these
two sites is first fitted by an exponential function similar to eq
14. This fit provides the values of the rates kn and kn+1 of the
hole transfer from Sa to the n-th base pair and from Sa to the

Table 2. Rate (ki
f, ki

s) and Quantum Yields (Φi
f, Φi

s) for Fast
and Slow Injection into Poly(A)-Poly(T) Hairpins

theorya experimentb

seq. ki
f (ps−1) Φi

f ki
s (ps−1) Φi

s ki
f (ns−1) Φi

f ki
s (ns−1) Φi

s

1 4.44 84 0.57 9 − − − −
3 3.29 78 0.17 12 15.15 76 2.70 20
6 3.32 80 0.12 14 10.52 71 1.12 19

aTheoretical values are obtained for a localization energy of 150 meV.
bExperimental data were taken from ref 34.

Figure 5. Schematic illustration of the method for evaluation the hole
transfer rates between neighboring A:T base pairs in hairpin 3. Rates,
kn, for hole transfer from the donor state |Sa⟩ to the n-th A:T pair are
obtained from our numerical calculations. The transfer rates kn→(n+1)
are deduced from the rates kn and kn+1 via eq 17. Similarly the rate of
hole transfer from the last A:T to the acceptor state |Sb⟩ was estimated
exploiting calculated values of k3 and ka.
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(n + 1)-th base pair, respectively (see Figure 5). The
characteristic time, τn+1, of charge transfer from the donor
site to the (n + 1)-th base pair can be expressed as the sum of
the time, τn, needed to transfer a positive charge from the donor
to the n-th base pair and the time, τn→n+1, of hole transfer
between the n-th and (n + 1)-th site. Since kn→n+1 = τn→n+1

−1 , the
transfer rate between neighboring A:T base pairs can be
expressed in terms of kn and kn+1 as

=
×
−→ +

+

+
k

k k
k kn n

n n

n n
1

1

1 (17)

The values of the hole transfer rate between neighboring
base pairs calculated for hairpin 6 using eq 17 with different
values of Eloc are summarized in Table 3. Numerical data

obtained for the case where partial localization is ignored are
also included in the table. Due to the gradual reduction of the
energy gap between neighboring sites (see Figure 1), the values
of kn→n+1 (n = 1−5) are larger at the end of the hairpins (1.8−
4.3 ps−1) than at the beginning (0.18−0.36 ps−1). Besides, the
hole transfer between neighboring A:T pairs decreases
significantly when partial localization is taken into account.
Deeper traps make thermal repopulation of the |Ai⟩ states more
difficult thus reducing the interbase pair transfer rates (see SI
for more details). Previous theoretical estimations of the
transfer rate between the nearest neighbors in the base pair
stack lead to a value of 0.3 ps−197 and 1.2 ns−1,98 while the
values deduced from some time-resolved measurement equals
20 ns−1.96 This experimental estimate is at least 2 orders of
magnitude lower than our numerical results (see Table 3).
Note, however, that analysis of experiment in ref 96 and the
calculations performed in the present work refer to diametri-
cally opposed situation. While the experimental estimate was
made assuming that the transfer from the last base pair to the
hole acceptor kf is much faster than the interbase pair transfer
rate kn→n+1,

96 our numerical data on the transfer rate rate
between adjacent A:T pairs refer to the situation where kf ≪
kn→(n+1).
The transfer rate, kf, for the hole transition from the last base

pair to the hole acceptor can be calculated by replacing kn+1
with the arrival rate, ka, in eq 17. The values of kf are listed in
Table 4 for the hairpins 3−6. The values of kf for the hairpins 1
and 2 are not shown, since hole transfer along these two short
hairpins is governed mainly by superexchange. Including partial
localization in our model considerably reduces kf. Similar to
hole transfer rate between neighboring A:T base pairs, the
increase of the localization energy reduces kf by reducing the
probability of thermal repopulation of the |Ai⟩ states. The data
in Table 4 show that the value of kf depends not only on the
value of Eloc but also on the length of the hairpin. This can be

understood by taking into account that the increase of the
hairpin length makes the energy gap between the last base pair
and the hole acceptor larger, thus reducing the transfer rate
between them. For example, kf for hairpin 3 is equal to 0.93
ns−1 but becomes as small as 0.17 ns−1 for hairpin 6. Note that
the values of kf are 3 orders of magnitude smaller than the
typical hole transfer rates between adjacent base pairs (see
Table 3). Hence, this last transfer step should be considered as
the limiting factor for the overall hole migration process.

Charge-Transfer Mechanism. As discussed in Introduc-
tion section, mechanistic picture of the charge transfer in DNA
often relies on the competition of coherent superexchange and
incoherent multistep hopping. The former mechanism is
assumed to be dominant for short sequences with a few base
pairs, while the latter prevails for longer DNA molecules. As
follows from Figure 2, our calculations also provide evidence in
favor of superexchange hole transfer along short hairpins. To
recognize this, it should be remembered that superexchange
leads to an indirect charge transfer between Sa and Sb with only
a small fraction of the charge density residing on the base pair
bridging a hole donor and a hole acceptor. This, however, is not
the case for long hairpins. Indeed, according to the data of
Figure 3, in such systems the hole transfer cannot be associated
with superexchange since most of the charge is located on the
base pairs during the charge propagation. Now the hole transfer
will proceed via another mechanism distinct from super-
exchange. This rises several important questions: (i) Can this
alternative mechanism be incoherent hopping, so that the
mechanistic picture of hole migration is based on the
competition of coherent and incoherent processes? or (ii)
can experimental and theoretical results obtained for short and
long hairpins be explained in the framework of one unified
mechanism of charge transfer?
If the answer to the question (i) is positive, then the

mechanism competing with superexchange is often assumed to
be incoherent multistep hopping. This mechanism occurs via
incoherent sequential transitions of the charge carriers between
adjacent base pairs. The nature of the hops and the degree of
charge delocalization have long been a matter of contention
between various groups. Recent electronic structure calcu-
lations have shown that the frontier molecular orbitals of
adenine stacks are mainly localized on a single base.99 The
localization of the molecular orbitals is due to the strong
energetic disorder along the stack compared to the couplings
between adjacent base pairs.99 Semiclassical calculations of the
charge propagation have also shown that due to the fast
trapping rate on A bases, the charge remains localized on a
single base pair between successive hops.64 Such sequential
transitions between localized states associated with a separate
nucleobases were not observed in our calculations. As seen in
Figure 3, the hole density goes from a localized state on Sa to a

Table 3. Hole Transfer Rate between Adjacent A:T Pairs for
Hairpin 6 with Different Values of the Localization Energy
Eloc

Eloc (meV)

rate (ps−1) no partial localization 50 150 250

k1→2 0.65 0.36 0.23 0.18
k2→3 0.98 0.41 0.24 0.20
k3→4 1.53 1.08 0.90 0.49
k4→5 21.23 3.96 1.35 0.78
k5→6 86.16 4.31 2.31 1.83

Table 4. Rates of Hole Transfer from the Last A:T Base Pair
to the Acceptor (kf) in Poly(A)-Poly(T) Hairpins with
Different Values of the Localization Energy Eloc

kf (ns
−1)

Eloc (meV)

seq. no partial localization 50 150 250

3 15.68 1.58 0.93 0.61
4 7.55 0.69 0.40 0.24
5 5.00 0.43 0.25 0.16
6 3.58 0.30 0.17 0.11
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delocalized state along the base pair stack. Therefore our
calculations suggest that transfer of positive charge cannot be
associated with hopping mechanism involving sequential
transitions between localized states provided by nucleobases.
A certain degree of hole delocalization has been suggested

earlier to explain the propagation of a positive charge along
extended DNA systems. Polaron-assisted models58,59,61,62,65

and variable-range hopping approach47,100 are two different
methods that predict different degree of hole delocalization. In
polaronic models the hole density is inhomogeneously
distributed over few base pairs with a maximum of the hole
density located at the center of the delocalization do-
main.58,59,65 The charge propagation occurs then by reversible
sequential hops between neighboring domains. Another
mechanism is considered within the framework of the model
of variable range hole hopping. According to refs 47 and 100,
variable range hopping is based on charge propagation along
localized and delocalized channels. Half of the charge density is
injected in the delocalized channels and spreads instantaneously
along the base pair stack, while the other half is injected in the
localized channels and propagates sequentially between
neighboring base pairs.47,100

The two models mentioned above, as most of the models
proposed in the literature, ignore the presence of traps along
the hairpin. According to semiclassical approach the presence of
these traps should induce a localization of the charge carrier on
a single base pair.64 To the best of our knowledge, our
approach is the first attempt to demonstrate that a full quantum
description of trapping together with an accurate treatment of
static and dynamic disorder along the hairpin leads to the
complete delocalization of charge carriers over the entire
system. However the charge density profile obtained with our
approach is very different from the ones obtained with the
variable range hopping or the polaronic models. As seen in
Figure 3, the charge density is rapidly transferred from Sa to the
first base pair. Due to the large energy difference between the
first and the second A bases, a significant hole localization
occurs on the first site. The charge density is then slowly
transferred to the second base pair and so on. In contrast to the
reversible hopping used by a number of authors, the transfer
from base pair to base pair is here irreversible with charge
density building up further and further away from Sa. Besides
due to the dephasing induced by the dynamical disorder and
the interactions between the propagating charge and the bath
modes, the coherence of the propagating charge, i.e., the off-
diagonal elements of its density matrix, progressively vanishes.
This gradual loss of coherence transforms the initial pure state
localized on Sa into a delocalized mixed state. This is in contrast
with the polaron-based model where such decoherence can
only be obtained by averaging the dynamics over the initial
position and momentum of the sites. On the other hand,
variable range hopping suggests an instantaneous loss of
coherence and hence does not describe the transition between
the initial pure state and the final mixed state.
The intermediate mechanism depicted in Figure 3 is due to

the combined effects of the dynamic disorder and traps states.
The dynamical disorder facilitates the transfer between
neighboring base pairs by randomly creating resonance of
their on-site energies. The degree of delocalization of the
charge carrier is therefore gated by the dynamical disorder. A
maximum degree of delocalization is obtained when the
amplitudes of dynamic and static disorders are of the same
order of magnitude. In addition, the characteristic time of

fluctuations, τ, has to be small enough so that many accidental
resonances can be created during the lifetime of the hole on the
hairpin. On the other hand, τ must be large enough for the
resonant transfer between bases to occur. These fluctuations as
well as the interaction with the bath modes leads to a
progressive loss of coherence for the propagation of hole
density preventing superexchange to occur across 1−2 base
pairs. As seen in Figure 4 the presence of traps along the system
is crucial to obtain a quantitative agreement between theory
and experiment. As one could expect the traps impede the
charge transfer between neighboring bases and slow down the
overall charge transfer. The presence of traps also affects the
profile of the charge density. Ignoring the traps in hairpin 6
leads to smaller maximum population on the second base pair
since the hole density does not undergo a strong localization on
that site. As mentioned above, our model ignores the
reorganization of the solvent induced by the hole motion.57

The solvent reorganization can, in principle, localize the charge
carriers.63 However this solvent-induced localization requires
that the propagation time and the time of solvent
reorganization will be of the same order of magnitude. This
mechanism is therefore important for long DNA molecules and
can be neglected for the hairpins studied in the present paper.
For the latter systems, our calculations predict that hole is
transferred from the donor to the acceptor via one unified
mechanism rather than through two competing mechanisms
involving superexchange and hopping. This unified mechanism,
which is truly intermediate between coherent superexchange
and incoherent multistep hopping, is expected to occur on
spatial scales intermediate between the length of DNA hairpins
with 1−2 base pairs and the length of extended DNA
oligomeric systems.

■ CONCLUSION
In this paper we formulated a model for hole transfer in
relatively short poly(A)-poly(T) hairpins containing less that
seven base pairs. We have analyzed the effect of partial
localization of the hole density on the arrival rate on the
acceptor site, the injection rate, and their corresponding
quantum yields. Our calculations are based on the numerical
solution of the Liouville equation with the Hamiltonian in
which few molecular vibration modes are explicitly incorpo-
rated. This allows us to take into account the hole−phonon
interactions responsible for partial localization of charge
carriers.
Our calculations confirm that superexchange is indeed the

mechanism governing the hole transfer from donor to acceptor
in poly(A)-poly(T) hairpins with one or two base pairs.
However, charge-transfer excitation of the stilbene-adenine
sandwich pair may bypass the locally excited state, removing the
need for the superexchange mechanism. For longer hairpins our
simulations show a delocalization of the positive charge along
the entire system. The impact of partial localization of the hole
density on the arrival rate and its distance dependence have
been studied numerically. Our calculations show that in the
absence of partial localization, the value of the arrival rate
obtained for relatively long hairpins is overestimated by 2
orders of magnitudes. The inclusion of partial localization in
our model reduces significantly the value of the arrival rates
making numerical results consistent with available experimental
data. Furthermore, the agreement between theoretical and
experimental results was found to be much better in
comparison with earlier investigations.
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The distance dependence of the arrival rate predicted by our
model represents an exponential decay (∝ e−βR with β = 0.9
Å−1) for short hairpins followed by a power law [∝(R/R0)

−η

with η = 2] as the hairpin becomes longer. These values of β
and η were found to be in good agreement with experimental
data and were previously associated with superexchange and
multistep hopping, respectively. Our simulations provide
evidence in favor of superexchange for short hairpins. However
the power law distance dependence of the arrival rate alone
cannot be considered as a signature of multistep incoherent
hopping since a similar distance dependence was obtained in
our simulations where the charge propagation is mediated by
the delocalization of charge density along the entire sequence.
The partial localization involved in the latter mechanism of
charge propagation does not lead to a complete loss of
coherence during hole motion. Consequently, the charge
transfer along the short DNA hairpins considered in this
article proceeds via an intermediate mechanism distinct of both
superexchange and hopping. This intermediate mechanism
should dominate if the characteristic time of hole transfer
through the |Ai⟩ states is larger than time needed for the
localization of the positive charge due to the |Ai⟩ → |ti⟩
transition but smaller than time required for the reorganization
of the molecular surrounding. A similar mechanism could also
occur during charge transfer in organic photovoltaics and
photoelectric materials as the main ingredients responsible for
charge propagation are the same as the ones described here.
The presence of correlated molecular vibration modes in
organic crystals could however change the degree of
delocalization of the charge carrier.
The numerical results obtained following our approach also

enable us to calculate the transfer rates between adjacent A:T
pairs. Due to the site energy profile along the hairpin, this rate
turns out to be larger at the end of the sequence than at the
beginning. Besides, due to the large energy difference between
the last base pair of the sequence and the hole acceptor, the
transfer rate between these two sites is much smaller than all
the transfer rates between adjacent A:T pairs. Consequently
this last step should be consider as the limiting factor of the
charge migration from the hole donor to the hole acceptor.
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