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Overview
• Introduction: 

– Molecular electronics

– Short course in LRC electronics: Impedance

– Definition of DC conductance in molecules (zero temp., small bias)

• Simplified Theory, DFT based

– Method of calculation (Monte Carlo(!))

– Nice intuitive understanding

• Rigorous Method: simulation of a real measurement

• TDLDA approximation within of the rigorous method

– Time dependent LDA in real time

– Calculating and seeing the response

– Averaging and calculating DC conductance

– Not averaging and calculating impedance

• Summary and conclusions
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Chapter 1: Introduction

• Molecular electronics

• Short course in LRC electronics: Impedance

• Definition of DC conductance in molecules



Synthetic methods do it!

Reed et al,
Science 278,252 (1997)

Chen et al,
Science 286,1550 (1998)

V (Volt)



Molecular transistor N
. B

. Zhitenev
et al. P

hys. R
ev. Lett. 88, 226801 (2002).



Coulomb blockade and Kondo effect
J. P

ark et al., N
ature 417 (6890), 722 (2002).



Computing conductance (I)

• Leads are electron reservoirs
• Each lead in chemical equilibrium µL, µR, β
• Current from left to right

• Current from right to left
• Total current (Landauer picture):
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Calculating T(E)

( ) ( ) ( )†4 L RT E Tr G E G E = Γ Γ 
T. Seideman and W. H. Miller, J. Chem .Phys. 97, 2499 (1992).



Possibility of interference



Fermi-Huckel Wave length

λ=L

a=CC

Bonding

λ=2a
Anti-

bonding

λF=4a Half filling



"Huckel" Interference
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XOR gate based on interference...
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CIS Interference

At the Fermi level:
destructive interference



Trans Interference

At the Fermi level:
constructive interference



T(E) based on DFT



Molecular Electronics is Coming(?)

• Synthesis: can connect 
molecule to leads

• Analysis: can measure I-
V curves (DC)

• Next: measure 
impedance?...

Cartoon from Agilent, www.educatorscorner.com



RC circuit
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RL circuit
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RLC circuits: Impedance
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Can molecules do all that?

• If we work in high enough frequency yes
• We need to understand much more about 

conductance!
• This talk takes a benchmark system and tries 

to understand conductance:
– Simple level: independent particle theory
– Advanced level: time dependent DFT

• As a bonus we get AC impedance



T(E) of What???

• T(E) = cumulative “reaction probability”
• But what is the Hamiltonian?
• Simple picture

• How to compute conductance from this
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Benchmark: Two C6 Systems
C R Lang A

vouris, P
hys. R

ev. Lett. 81, 3515 (1998).



Benchmark in a Box
• Box with R-space grid Lz=64 a0, Lx=Ly=10a0, 

Ng = 20 x 20 x 128 = 51,200

• FFT –do all the hard work

• Molecular wire:
– Ionic cores – pseudopotentials (Fuchs +Scheffler PP98)

– Realistic model

• Metal Leads: 
– a uniform average over the positive ionic charge of the metals 

– enough electrons to exactly neutralize

– Not so realistic, but very well defined!



Simplified scheme

• Perform full DFT calculation
• in principle, also geometry

– we did it, finding some Peierls dimerization
– Effect not included here

• Give εF (HOMO energy)
• Then, using the Fock matrix HKS…



Iteration number
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Monte Carlo method for trace

• Given an operator A, where Aψ is expensive 
compute

• Solution:
• Proof:
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Benchmark: Two C6 Systems

Channel has no barrier 
on the contrary – deep

In R system, small 
entrance barrier=1.5 eV

Fermi electron kinetic 
energy is 5.5 eV. 

But.. X/Y coordinates 
need to squeeze into 
the narrow channel.

Costs ~2.5 eV, and 
need good x/y
accelaration

C system will conduct 
better: sticks out so goo
x/y acceleartion



But… Things are NOT so simple

• Vks is missing the bias
• Electrodes metallic → bias localized on junction
• Solution: put in a bias potential  Hbias = HKS+Vbias

• Problem 1: what is Vbias??
• Problem 2: screening of the bias???
• Issues raised recently by Datta, Ratner, Nitzan, Lang
• Popular method to deal with these: Non eq. Greens F
• We present a different approach that encompases this 

and adds more



Do what the experimentalist does

• Connect a molecule to 
leads (“junction”)

• Turn on bias
• Measure potential 

difference V12(t)
• Measure current through 

junction I(t)
• Fourier transform

• DFT GS electrons +Ions 
+Jellium+ NIP

• Add           and 
propagate

• Calculate n(r,t)

• Calculate
• Fourier transform
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TDDFT in Real time

• Density is represented by orbitals:

• Orbitals must obey

• The potential vs is given by the Euler equation:
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Basic xc-functional: ALDA
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Slight change in NIP

• We have a many electron system
• NIP will gobble up the electrons 
• So, we use projection operator far from the 

junction (in principle, should be very deep in 
leads, in practice, mildly deep):

†ˆ

ˆ 1

NIP NIP

KS KS
n n

n occ

V Q v Q

Q ψ ψ
∈

=

= − ∑



Typical voltage differences
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DC conduction with TDLDA



DC Charge Density: screening
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DC conductance using TDLDA
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We too have a movie:

Quantum fluctuations of the Current

Shown, the current for R system:

( ) ( ) ( ), , ,DCJ r t J r t J r t∆ = −

(Each frame is 0.5 fs)
Apparent: uniformity, 
like collective excitations



Absorption spectrum of components
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Fourier spectrum of current
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Impedance
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Summary
• Understanding conductance:

– Simple theory for conductance
– Efficient Monte Carlo method
– Vks Mechanism for difference in conductance (no orbital picture!)

• Reshuffled all!
– The bias potential
– Dynamic screening

• A definition of conductance: more like the experiment
– Application using TD-ALDA
– Large difference in results from simple theory

• Novel observable: AC impedance
– Impedance very different in both systems. 
– R system has strong RC at low freq. and strong RL at high frequency
– C system has no R-C behavior (C infinite) and strong RL at high frequency.
– Geometric description in the complex plane (circles etc).

• To Do’s:
– Self interaction
– “Current density functional theory”, large bias
– Nuclear motion (via Ehrenfest molecular dynamics)
– More new applications
– More realistic Leads (…)


