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Designer Dirac fermions and topological phases in
molecular graphene
Kenjiro K. Gomes1,2*, Warren Mar2,3*, Wonhee Ko2,4*, Francisco Guinea5 & Hari C. Manoharan1,2

The observation of massless Dirac fermions in monolayer graphene
has generated a new area of science and technology seeking to
harness charge carriers that behave relativistically within solid-state
materials1. Both massless and massive Dirac fermions have been
studied and proposed in a growing class of Dirac materials that
includes bilayer graphene, surface states of topological insulators
and iron-based high-temperature superconductors. Because the
accessibility of this physics is predicated on the synthesis of new
materials, the quest for Dirac quasi-particles has expanded to
artificial systems such as lattices comprising ultracold atoms2–4.
Here we report the emergence of Dirac fermions in a fully tunable
condensed-matter system—molecular graphene—assembled by
atomic manipulation of carbon monoxide molecules over a conven-
tional two-dimensional electron system at a copper surface5. Using
low-temperature scanning tunnelling microscopy and spectro-
scopy, we embed the symmetries underlying the two-dimensional
Dirac equation into electron lattices, and then visualize and shape
the resulting ground states. These experiments show the existence
within the system of linearly dispersing, massless quasi-particles
accompanied by a density of states characteristic of graphene. We
then tune the quantum tunnelling between lattice sites locally to
adjust the phase accrual of propagating electrons. Spatial texturing
of lattice distortions produces atomically sharp p–n and p–n–p
junction devices with two-dimensional control of Dirac fermion
density and the power to endow Dirac particles with mass6–8.
Moreover, we apply scalar and vector potentials locally and globally
to engender topologically distinct ground states and, ultimately,
embedded gauge fields9–12, wherein Dirac electrons react to ‘pseudo’
electric and magnetic fields present in their reference frame but
absent from the laboratory frame. We demonstrate that Landau
levels created by these gauge fields can be taken to the relativistic
magnetic quantum limit, which has so far been inaccessible in
natural graphene. Molecular graphene provides a versatile means
of synthesizing exotic topological electronic phases in condensed
matter using tailored nanostructures.

The Dirac fermion has emerged as a common feature of new materials
whose band structure and embedded spin degree of freedom are
described by the relativistic Dirac equation1. In two dimensions, it
has long been appreciated theoretically that the honeycomb lattice
and mapping of the sublattice degree of freedom to a pseudospin is
represented by the Dirac equation for electrons bound to the lattice,
HG 5 B~csNk, where k is the vector momentum, s 5 (sx, sy) and si are
the 2 3 2 Pauli spin matrices coupled to pseudospin, ~c is the Dirac
fermion velocity (the effective speed of light) and B is Planck’s constant
divided by 2p. The simplest model for this physics is captured in the
two-site tight-binding band structure characterized by a hopping-
matrix element, t, describing the bond strength between nearest-
neighbour atoms separated by a distance a. Although this model is
realized naturally in graphene, where carbon atoms comprise the

honeycomb structure, it is more general and can describe any atoms
in the same lattice, and even electrons alone, subject to the same sym-
metries but devoid of atomic ‘containers’. However, tunable artificial
Dirac fermions in honeycomb lattices have not been found in either
atomic3,4 or condensed-matter13,14 systems.

In this work, we show that the synthesis and control of Dirac fermions
in a general solid-state material is readily possible and can be interpreted
in terms of simple ideas such as the decoration of crystal surfaces with
atoms or molecules and periodic and aperiodic assembly, and by the
application of familiar band structure models. In principle, any two-
dimensional electron system (2DES) can be transformed into a host for
Dirac fermions if it is patterned with a suitable periodic array of gates. In
the case of top gates biased to a positive potential relative to a buried
2DES, a honeycomb arrangement of gates or dots14 is necessary to
induce electrons to form a graphene structure. The dual of this con-
figuration can also be exploited: for negative potentials that deplete
electrons under the gates, a triangular gate array leaves electrons in a
honeycomb pattern and is described by the same Dirac Hamiltonian.
Recently we showed how single atoms can function as atomic-size gates
of a 2DES at noble metal surfaces15 and how simple molecules such as
CO function as repulsive potentials for surface electrons when shaped
into open5 and closed16 quantum structures. Here we use individual CO
molecules arranged molecule by molecule on a Cu(111) surface as a
tunable gate array to transform a 2DES passing through these lattices
into Dirac fermions, whence the term ‘molecular graphene’. The specific
potentials established induce these quasi-particles to condense into vari-
ous topological phases. The resulting nanostructures need not even be
periodic. In fact, control over every lattice position and potential in the
artificial materials we construct provides unprecedented control of the
spatial texture of the hopping parameter, ultimately allowing obser-
vation of electronic ordering into ground states rarely encountered in
natural systems. (See Supplementary Fig. 1 for a summary.)

The starting point of our experiment is the nearly free 2DES on
Cu(111), which is characterized by very long coherence lengths
(.1,000 Å near the Fermi energy, EF, where the sample bias is
V 5 E/e 5 0 and e is the electron charge), a band edge at
E0 5 20.45 eV and an effective mass of m*5 0.38me, where me is
the electron mass. For E , 0.5 eV, the dispersion relation is parabolic
and the Fermi velocity is vF 5 6.45 3 105 m s21. Carbon monoxide
molecules are adsorbed on clean Cu(111) and a lattice is assembled
by positioning the molecules individually using the tip of a scanning
tunnelling microscope (Fig. 1a and Supplementary Video 1). All
experiments were performed at a temperature of 4.2 K. By applying a
periodic potential at the surface, we can embed a topological singularity
into the energy bands, thus forming a Dirac point and producing linear
carrier dispersion. In this work, we made molecular graphene consist-
ing of ,100–1,000 molecules. For large lattices, the numbers of equi-
valent C sites and C–C bonds are respectively almost two and three
times the number of assembled molecules.
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A completed ‘flake’ of molecular graphene is shown in topographic
form in Fig. 1b, demonstrating a perfect internal honeycomb lattice
and discernable edge effects at the termination boundaries. The spec-
trum shown in Fig. 1c was measured at the lattice C sites near the
centre of a lattice built using 271 CO molecules separated by a distance
d 5

ffiffiffi
3
p

a 5 19.23 Å. The spectra in all the figures show surface-state
conductance, ~g(E,r), where r denotes the measurement position.
(Henceforth, ‘tilde’ quantities refer to continuum properties of the
Dirac fermions.) These spectra are measured by taking the ratio, gR,
between the measured differential tunnelling conductance and the
spatially averaged value acquired on clean Cu(111) (Supplementary
Fig. 2). This normalization removes the featureless slope present in the
bare Cu spectrum and cancels the effect of possible energy-dependent
tunnelling matrix elements that may vary between different microscope
tips. The jump in differential conductance at the two-dimensional band
edge, g2D 5 m*/pB2 5 1.585 eV 21 nm22, additionally provides a
quantitative calibration of the surface density of states (DOS) and is
used to scale gR to meaningful units (Supplementary Information).

The edge of the gap at the M point in momentum space (Fig. 1c) is
marked by the peak in conductance at EM 5 2104 meV. The Dirac
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Figure 1 | Dirac fermions in molecular graphene. a, Sequence of constant-
current topographs during the assembly of a molecular graphene lattice
(V 5 10 mV, I 5 1 nA). b, Topograph of a molecular graphene lattice
composed of 149 CO molecules (lattice constant, d 5 8.8 Å). c, Spatially
averaged, normalized differential conductance spectrum, ~g(V) (solid line),
measured on the top sites near the centre of quasi-neutral molecular graphene
(d 5 19.2 Å), accompanied by a tight-binding DOS fit (dashed line) with
hopping parameters t 5 90 meV and t9 5 16 meV. Inset, resulting Dirac cone
realized in reciprocal space (corresponding to fit parameters). The tight-
binding spectrum is calculated by finding energy eigenvalues of a finite
graphene lattice with Lorentzian basis functions (to model the finite lifetime
due to scattering to bulk states and coupling to the two-dimensional continuum
at the graphene edges, we used an electron self-energy S 5 C/2, where the
linewidth is C 5 40 meV from observed broadening of states near EF).
d, Linearly dispersing quasi-particles revealed by the conductance spectra
~g(~E,r), plotted individually for sublattice A (filled circles: pseudospin sz 5 11/
2, |"æ) and sublattice B (open circles: pseudospin sz 5 21/2, |#æ), measured at
locations r illustrated in the inset. Points for | ~E | = eVrms, where Vrms is the
modulation voltage, are excluded from this plot because this instrumental
broadening prohibits their accurate measurement.
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Figure 2 | Dirac point engineering in a p–n–p junction. Spectroscopic
measurements made from a p–n–p lattice with alternating lattice spacings: d
changes abruptly from 17.8 to 20.4 Å and then back again. a, Topograph of the
p–n–p lattice. The conductance spectra were measured across the centre line
marked by the grey arrows. b, Intensity colour plot of the conductance spectra
~g(V ,x), where x denotes the distance along the centre line. The white line is the
locus of minima (the Dirac points (ED)) in the conductance spectra. The dashed
line marks the Fermi energy (EF). Illustrative Dirac cones are superimposed to
show the effective doping of each region. c, Spatially averaged, normalized
conductance spectra measured along the centre line (marked by arrows in
a). The first spectrum (blue, left) was measured in the left-hand, p-type, region
(d 5 17.8 Å), the second (orange, centre) was measured in the central, n-type,
region (d 5 20.4 Å) and the third (blue, right) was measured in the right-hand,
p-type, region (d 5 17.8 Å).
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point is marked by the conductance minimum at ED 5 25 meV.
Although the 2DES is normally decoupled from the bulk electrons for
pure Cu, the presence of the molecules allows finite scattering and hence
adds to the lifetime broadening evident in ~g. In a direct comparison with
graphene tight binding, the nearest-neighbour hopping energy scale can
be read from the data in Fig. 1c as t < EM 2 ED 5 99 meV. The corres-
ponding Dirac velocity is~c 5 3ta/2B5 (2.5 6 0.2) 3 105 m s21. The dis-
tinctive graphene spectral signature observed (Fig. 1c) can be contrasted

with the electronic structure of the honeycomb lattice inverse, which is a
(non-Dirac) triangular electron lattice (Supplementary Fig. 3). The suc-
cessful match to tight-binding theory in both cases demonstrates the
promise of these techniques for realizing many other lattice types.

A complementary model uses the nearly free electron model and
‘muffin-tin’ potential17 to extract the properties of the emergent Dirac
fermions. This approach (Supplementary Information) yields the
position of the Dirac point, centred at the K points of the supercell
Brillouin zone. For a wide range of Fourier coefficients of the
superlattice potential, the nearly free electron model predicts that
t5 4

ffiffiffi
3
p

pB2/27m*a2 5EM 2ED 5118 meV and that ~c 52pB/3
ffiffiffi
3
p

m*a5

(3.3 6 0.2) 3 105 m s21, in good agreement with the parameters
deduced from the tight-binding model.

The pseudospin structure of the Dirac point can be probed by
directly tunnelling into the A and B sublattice sites17. Figure 1d shows
plots of ~E 5 E 2 ED versus ~g for the two sublattices, with a sign modi-
fication depending on which sublattice is probed. This method inter-
rogates the underlying wavefunction overlap with each pseudospin sz,
and reveals the underlying massless Dirac fermion structure in the
assembled nanomaterial. The slopes of the observed linearly vanishing
DOS yield ~c 5 (3.1 6 0.2) 3 105 m s21. This and the above values for ~c
are in reasonable agreement and also match an expected theoretical
value of ~c < vF/2 < 3.2 3 105 m s21 for the nearly free electron
model17. Just as in real graphene1, an electron–hole asymmetry is
observed in our molecular graphene (Fig. 1c). This asymmetry is
due to a finite second-nearest-neighbour hopping-matrix element,
t9. A full tight-binding fit to the experiment (Fig. 1c) yields
t 5 90 meV and t9 5 16 meV. These values agree well with the poten-
tial model (Supplementary Information). The resulting Dirac cone
centred at each K point in reciprocal space is plotted in Fig. 1c (inset).

Although EF is fixed for the underlying 2DES and cannot be changed
by conventional electrostatic gating, we are able to modify the lattice
parameters to change the electron count per superlattice unit cell and
thus control the graphene doping level. Making these changes on the
atomic scale permits a change in the Dirac fermion carrier concentra-
tion over very short distances. To demonstrate this idea, we built
molecular graphene with alternating CO lattice spacings, starting with
d 5 17.8 Å and abruptly changing to 20.4 Å and then back to 17.8 Å
(Fig. 2). In the lattice with the smaller spacing, the Dirac point is located
46 meV above EF, leading to a hole-doped (p-type) lattice with a carrier
density of 1.41 3 1012 cm22 (Fig. 2a). The lattice with the larger spacing
is electron doped (n-type), with the Dirac point located 49 meV below
EF and a carrier density of 1.23 3 1012 cm22 (Fig. 2c). We measure the
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Figure 3 | Charge- and bond-density waves in molecular graphene.
a, Topographic image of quasi-neutral molecular graphene (d 5 19.2 Å), with
an additional CO molecule at the top site (location indicated in inset).
b, Impurity scattering quasi-particle interference mapped through the
subtraction of two topographs (V 5 10 mV, I 5 1 nA) measured in identical
fields of view and distinguished only by the presence of the extra CO molecule
at the top site. c, Topograph of quasi-neutral molecular graphene (d 5 19.2 Å),
with the central CO molecule removed from the empty site (location indicated
in inset). d, Corresponding difference map of two topographs measured as
above, revealing quasi-particle interference of higher symmetry. e, Left:
schematic of a pure molecular graphene lattice (grey circles denote CO
molecule positions, small black dots are C sites, blue lines represent uniform
hopping parameter t). At bottom, the schematic is overlaid with a topograph of
the corresponding experimental lattice (d 5 17.8 Å). Right: schematic of the
modifications to pure molecular graphene to obtain a Kekulé hopping texture.
The addition of extra CO molecules (grey circles) splits the nearest-neighbour
hopping parameter into two different values (t1 in purple and t2 in pink, t1 . t2),
as illustrated. At bottom, the transformation schematic is overlaid with
measured topography from experiment after molecular manipulation
(d 5 19.2 Å). f, Conductance spectra measured in pure molecular graphene
(blue) and in the graphene lattice after the Kekulé texturing (red). The spectra
display the opening of a gap, D, at the Dirac point. Dashed curve, tight-binding
fit calculated with t1 5 2t2. The small difference in d compensates for the
change in chemical potential introduced by the extra CO molecules.
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surface spectrum (~g) across the lattice along the line indicated (Fig. 2a, b,
arrows), crossing all regions. Because there are no charging effects, the
interface between the p- and n-type regions is very narrow: it is about
20 Å wide (Fig. 2b). The extremely short transition between the p- and
n-type regions makes this device a suitable candidate in which to study
phenomena such as the Klein paradox18 or to create a Veselago lens19.

Using atomic manipulation, we created both pseudospin-conserving
and pseudospin-breaking local disturbances further to reveal the
Dirac nature of our system. We started with quasi-neutral molecular
graphene with ED near EF (271 CO molecules, d 5 19.2 Å) and tested
two symmetries (a C-site defect (Fig. 3a), which locally imbalances the
sublattices, and an empty-site vacancy (Fig. 3c), which locally preserves
sublattice symmetry); these two structures are topologically distinct
because their potentials correspond respectively to a local vector
potential and a local scalar potential coupling to pseudospin. By sub-
tracting two low-bias scanning tunnelling microscope topographs, one
with the impurity and the other without it, and both locked to exactly the
same area and using identical measurement parameters, we obtain
detailed pseudospin maps resulting from the tiny DOS perturbations
caused by quantum interference. The distinct patterns observed have the
three-fold symmetry (Fig. 3b) predicted for single impurities in graphene
that disrupt the Berry phase20, rather than the full six-fold symmetry of
a scalar perturbation, which conserves pseudospin21–23 (Fig. 3d).

Topological changes fundamentally alter the lattice symmetry and
are the key to unlocking physical phenomena such as electron fractio-
nalization6–8,10–12,22. In graphene, one of the simplest (yet unrealized)
deformations is the Kekulé distortion rooted in the historical inter-
pretation of benzene. This distortion breaks the bond symmetry of
graphene by forming two hopping elements, t1 and t2, in the pattern
shown in Fig. 3e. We produce this distortion using a special ‘Mercedes’
arrangement of CO molecules in the honeycomb empty sites. This has
the effect of modulating the strength of every other C–C bond along
the perimeter of each cell. Such a distortion adds an off-diagonal term
to the Hamiltonian11, such that

HG~
B~csNk DI2|2

D�I2|2 {B~csNk

� �

where I2|2 is the two-by-two identity matrix and an asterisk denotes
complex conjugate. This distortion is predicted to open an energy gap,
D, even if the underlying sublattice symmetry is not broken; notably, this
effect has never been observed. Figure 3f proves that the Kekulé distor-
tion works as theoretically predicted, creating massive Dirac fermions
out of the massless Dirac fermions in the pristine lattice. From fits to
theory, the mass of the emergent fermions is mD 5 0.1 6 0.02 me. The
Kekulé ground state10–12,24,25 has an intriguing mapping to a supercon-
ducting topological surface state26, after pseudospin is mapped to spin
and the valley degree of freedom to an isospin, equivalent to attaching a
scalar gauge field that produces a Dirac fermion mass. This scalar gauge
field is manifest in the bond-density wave mosaic structure visible in
Fig. 3e. The transition from massless to massive Dirac fermions has
been theoretically cast as a quantum phase transition3,11; the molecular
graphene system provides an experimental test bed of these ideas start-
ing with the spontaneous generation of mass observed here.

The chiral character of the electronic charge in graphene is due to the
pseudospin associated with the symmetry between the two triangular
sublattices that form the honeycomb lattice. It has been proposed that
by breaking this sublattice symmetry through strain, it is possible to
generate a pseudomagnetic field and therefore obtain Landau levels
and quantum Hall phases without breaking time reversal symmetry.
The effect of strain has recently been observed in graphene nano-
bubbles27, but tunable molecular graphene offers much more precise
and in situ control over internal gauge fields. The strain field displace-
ments in polar coordinates (r and h) suggested9 to generate a constant
field are (ur, uh) 5 (qr2sin(3h), qr2cos(3h)), where q is a parameter denot-
ing the strength of the strain. In our final experiment, we applied this
strain field to molecular graphene by means of atomic manipulation.

Topographs for successively strained graphene are shown in
Fig. 4a. The value of the pseudomagnetic field can be estimated as
~B 5 8bBq/ea 5 16pqB/3de, where b 5 2Lln(t)/Lln(a) < 2 (Supplemen-
tary Information). We study strain values up to q 5 1023 Å21, which is
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Figure 4 | Landau quantization and topological zero modes in a tunable
pseudomagnetic field. a, Sequence of topographs of molecular graphene
lattices with increasing values of triaxial strain. The position of each CO
molecule was determined by the dislocation vector defined in the main text.
From bottom to top, q 5 0, 2.5 3 1024, 5 3 1024, 7.5 3 1024 and 1023 Å21.
The corresponding values of the constant pseudomagnetic field are ~B 5 0, 15,
30, 45 and 60 T (felt in opposite directions by the two graphene valleys; see
d, top inset). b, Topograph at the centre of the lattice without strain distortion
(q 5 0 Å21), showing the unbroken symmetry between each sublattice
(pseudospin) of the honeycomb. c, Topograph at the centre of the lattice with
strain distortion (q 5 1023 Å21), showing the broken symmetry between each
sublattice (one bright and one dark) as a result of the localization of the zero
Landau level on half of the sample (bright sublattice). d, Left: normalized
conductance spectra measured on sublattice A (brighter top sites in c and
orange circles in inset schematic) for successive values of strain. The spectra
were measured near the centres of the lattices shown in a. Right: spectra
measured on sublattice B (darker top sites in c and blue circles in inset
schematic) for the same successive values of strain, showing the opening of a
Landau gap. Grey solid curves are tight-binding fits of strained finite lattices to
the experiment. The grey dotted curve shows a tight-binding calculation in a
real magnetic field, B 5 60 T, for an unstrained lattice of the same dimensions
and hopping parameters.
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equivalent to a pseudomagnetic field of ~B < 60 T, corresponding now
to a vector gauge field dressing the Dirac fermions (the applied triaxial
strain can be contrasted with uniaxial strain (Supplementary Fig. 4),
which is devoid of gauge fields). The breaking of the pseudospin sym-
metry of the Dirac point can be probed by direct tunnelling into the
individual sublattice sites. Once the strain is applied, the symmetry
breaking between the two sublattices is discernible in the topographs
(Fig. 4b, c) and can be noticed in the spectra (Fig. 4d). In the ‘bright’
sublattice (A), a well-defined zero-bias state—the zero Landau level—
forms and gains prominence with increasing strain. In the ‘dark’
sublattice (B), the spectra are characterized by a reduction in the con-
ductance at zero bias with strain—the formation of a Landau gap—
visible through the transformation of typical V-shaped spectra into
U-shaped contours.

The presence of a zeroth Landau level at the Dirac point is one of the
hallmarks of the quantum Hall effect with Dirac fermions. The low
Fermi velocity here means that even a small strain can push the first
excited Landau level beyond the linear regime in the band structure,
towards or beyond the edge of the M-point gap. We estimate that for
our lowest value of strain (q 5 0.25 3 1023 Å21), ~B < 15 T and the
n 5 1 Landau level therefore lies at 33 mV. The registry of the CO
molecules to the surface Cu atoms quantizes the allowed lattice sizes
and hinders the formation of lattices with smaller strains. Nevertheless,
a complete quantitative model of our finite system shows that it
behaves as a graphene quantum dot in a real magnetic field, B, when
these strain fields are applied (in Fig. 4d, tight-binding fits for finite
strain and zero B and for zero strain and high B both provide excellent
reproductions of the observations).

Owing to the large strains applied, the particular topological state
observed here is an ultraquantized ground state: only the zeroth
Landau level is present and fractionally occupied by Dirac fermions.
Such a state is unprecedented in normal graphene owing to the larger
energy scales and, hence, very large magnetic fields necessary to study
it. The pseudospin symmetry breaking observed is connected with the
fundamental index theorem, which predicts the same topological
phase for Dirac fermions on a lattice28 as is observed here. In this phase,
the electrons in the zero mode form a peculiar condensate in which
they become completely delocalized over the sample but remain
alternately localized and antilocalized in the pseudospin projection29

(Supplementary Information). The image in Fig. 4c provides a snapshot
of this intriguing phase in real space.

The study of artificial lattices may lead to technological applications,
but they also provide a new level of control over Dirac fermions and
allow experimental access to a set of phenomena that has hitherto been
considered only theoretically. The introduction of tunable interactions
between the electrons could lead to the formation of spin liquids in
graphene, and the addition of spin–orbit coupling could lead to a
quantum spin Hall effect. The time-reversal-invariant quantum
Hall state observed here already has a direct connection to the two-
dimensional topological insulator9. In future, such topological phases
may be produced even more easily by extending our manipulation
techniques to self-assembly methods30, which naturally generate
long-range periodic potentials on decorated surfaces.

Received 8 July 2011; accepted 9 February 2012.

1. Castro Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic
properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

2. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).
3. Zhu, S.-L., Wang, B. & Duan, L.-M. Simulation and detection of Dirac fermions with

cold atoms in an optical lattice. Phys. Rev. Lett. 98, 260402 (2007).

4. Wunsch, B., Guinea, F. & Sols, F. Dirac-point engineering and topological phase
transitions in honeycomb optical lattices. N. J. Phys. 10, 103027 (2008).

5. Moon, C. R., Mattos, L. S., Foster, B. K., Zeltzer, G. & Manoharan, H. C. Quantum
holographic encoding in a two-dimensional electron gas. Nature Nanotechnol. 4,
167–172 (2009).

6. Chamon,C.et al. Irrational versus rational chargeand statistics in two-dimensional
quantum systems. Phys. Rev. Lett. 100, 110405 (2008).

7. Seradjeh, B., Weeks, C. & Franz, M. Fractionalization in a square-lattice model with
time-reversal symmetry. Phys. Rev. B 77, 033104 (2008).

8. Ryu, S., Mudry, C., Hou, C.-Y. & Chamon, C. Masses in graphenelike two-
dimensional electronic systems: topological defects in order parameters and their
fractional exchange statistics. Phys. Rev. B 80, 205319 (2009).

9. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum
Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

10. Jackiw, R. Fractional charge from topology in polyacetylene and graphene. AIP
Conf. Proc. 939, 341–350 (2007).

11. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional
graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007).

12. Seradjeh,B.& Franz, M. Fractional statistics of topological defects ingraphene and
related structures. Phys. Rev. Lett. 101, 146401 (2008).

13. Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H. & Ciraci, S. Two- and one-
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