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Organic magnetoresistance under resonant ac drive
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Motivated by a recent experiment, we develop a theory of organic magnetoresistance (OMAR) in the presence
of a resonant ac drive. To this end, we perform a thorough analysis of the dynamics of ac-driven electron-hole
polaron pair in magnetic field, which is a sum of external and random hyperfine fields. Resonant ac drive affects
the OMAR by modifying the singlet content of the eigenmodes. This, in turn, leads to the change of recombination
rate, and ultimately, to the change of the spin-blocking that controls the current. Our analysis demonstrates that,
upon increasing the drive amplitude, the blocking eigenmodes of the triplet type acquire a singlet admixture and
become unblocking. Most surprisingly, the opposite process goes in parallel: new blocking modes emerge from
nonblocking precursors as the drive increases. These emergent blocking modes are similar to subradiant modes
in the Dicke effect. A nontrivial evolution of eigenmodes translates into a nontrivial behavior of OMAR with the
amplitude of the ac drive: it is initially linear, then passes through a maximum, drops, and finally saturates.
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I. INTRODUCTION

First papers reporting observation of spin injection into
organic material (sexithienyl)1 and spin-valve effect2 with
organic active layer (Alq3) have launched a new field, organic
spintronics, with numerous potential practical applications
resulting from high tunability of organic-based structures. In
the quest for fabrication of functional spin valves it was
noticed that organic layers with nonmagnetized electrodes
exhibit anomalous sensitivity to weak magnetic fields. This
is how this sensitivity dubbed organic magnetoresistance
(OMAR) became a subject of extensive experimental and
theoretical studies.3–15 Until now, these studies were restricted
to measurement of current change, δI (B), and luminescence
intensity change, δIL(B), with magnetic field, B, at dif-
ferent temperatures and applied voltages. However, δI (B)
and δIL(B) exhibit quite similar behaviors, and thus offer
limited room for discriminating between different physical
mechanisms. Partly because of this, a unique explanation and
quantitative theory of OMAR is still debated. Meanwhile,
there is a strong indication that the physics behind the OMAR
phenomenon is fundamental. This is because the effect itself is
robust, while its magnitude and even the sign are sensitive to
technological details10–13 and intentionally imposed random
fringe fields.16

The most “economic” theoretical description of OMAR so
far was put forward in Ref. 8. It is appealing, in the sense
that it relates OMAR to spin-blocking, which is its natural
origin, in a most direct way by reducing it to the Larmor
precession of spins within a single pair of carriers. The model
of Ref. 8 was originally titled a “bipolaron model”; however,
the basic physics of spin-selective processes that it captures is
the same for either a bipolaron or an electron-hole pair. Still,
to confirm or rule out the existing physical pictures of OMAR,
it is desirable to supplement the measurements of δI (B) and
δIL(B) with probes of different aspects of OMAR. Viability of
a certain OMAR model should be judged by how successfully
it can account for results of these probes. One such probe was
recently reported by Baker et al.17 They applied a transverse
ac drive to organic-based diode, with bipolar injection, placed
in magnetic field B0 in which OMAR has practically saturated,

and observed a lively response in the form of a dip in δI (B) at
the resonance, ω0 = γB0, where γ is the gyromagnetic ratio.
The dip got progressively deeper upon increasing the drive
intensity.

In the present paper, we incorporate ac drive into the theory
of OMAR and demonstrate that the two-site model8 offers
very nontrivial predictions for the dependence of OMAR
on the driving amplitude, B1, and on detuning of ω0 from
the resonance. In particular, we predict that the dependence
δI (B1) is nonmonotonic. This behavior is a fingerprint of
the ac-induced trapping, which we demonstrate. Experimental
verification of this behavior would provide a strong support to
the adequacy of the two-site model.

II. QUALITATIVE PICTURE

It is commonly accepted that, in organic materials, where
the spin-orbit coupling is weak, spin-dependent phenomena
are due to the random hyperfine fields with rms b0 ∼ 10 mT
created by the nuclei. To relate OMAR to the spin dynamics of
a single pair of polarons, it is sufficient to adopt the simplest
assumption8,14,15 that bipolaron formation or recombination
(in bipolar devices) proceed only when the pair-partners are
in the singlet state, S. With equal probabilities of all initial
states, the recombination time of a pair is determined by the
hyperfine-field-induced admixture of the singlet to three other
spin eigenstates.

It is a crucial ingredient of OMAR that the current
response, δI (B), at B ∼ b0 is governed by sparse blocking
configurations8 in which hyperfine fields “conspire” to protect
the pair from crossing into S after its creation. As the field
increases and exceeds b0, these long-living states evolve into
T+ and T− components of a triplet, and the current saturates.

From the perspective of blocking, the effect of ac drive on
OMAR can be accounted for by considering the ac field as a
mixing agent, which tends to scramble all three triplet states
and, thus, to limit the trapping ability of T+, T−; see Fig. 1.
In this way, the ac field tends to change the current toward
its value at zero magnetic field, which is what was observed
in Ref. 17. From the above picture one would expect that the
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FIG. 1. (Color online) (a) Current passage through a bipolar
device involves recombination of electron (red) and hole (blue) which
occupy the neighboring sites; (b) Example of a pair in which electron
is on-resonance and hole is off-resonance. The bubble illustrates the
efficient mixing of the triplet components by the ac field, which, in
turn, affects the crossing rate T0 � S. The gray arrow indicates that
recombination occurs exclusively from S.

radiation-induced change of current, δI , is due to the change
of the recombination rate, which, in turn, is proportional to
B2

1 , i.e., to the power of the driving field.
The main finding that we report is that the dependence of

δI on B1 is much more intricate. In particular, it is linear for
weak B1. This effect stems from pairs in which one of the
partners is on-resonance; see Fig. 1. It appears that for these
particular pairs the radiation-induced suppression of trapping
by T+ and T− is especially efficient. However, such pairs
determine δI (B1) only for weak driving fields, namely, for
fields in which the nutation frequency is much smaller than
γ b0. As we will proceed to show, a very nontrivial physics
unfolds for higher B1. Quite unexpectedly, a new long-living
mode, 1√

2
(T+ − T−), emerges in strong enough driving fields;

see Fig. 2. This mode, in which both pair-partners are on
resonance, is fully analogous to subradiant state in the Dicke
effect.18 In this regard, we would like to note that although the
Dicke physics for an ensemble of atoms in an excited state has
been known for almost 60 years, the fact that it can emerge as
a result of ac drive has never been considered before. Trapping
by this “subradiant” state also yields a linear correction to the
current, but with opposite slope.

III. DRIVEN SPIN-PAIR WITHOUT RECOMBINATION

To highlight the physics, we first neglect recombination.
Since the experiment in Ref. 17 was performed on a bipolar
device, we start with the Hamiltonian of a driven electron-hole
pair,

Ĥ = ωeS
z
e + ωhS

z
h + 2�R

(
Sx

e + Sx
h

)
cos ω0t, (1)

where ωe,h = ω0 + δe,h, �R = γB1 is the Rabi frequency,
and δe,h are the z components of the hyperfine fields acting
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FIG. 2. (Color online) The evolution of dimensionless decay rates
of different modes with amplitude of the ac drive is plotted from
Eq. (10) for two sets of parameters (δτ,δ0τ ): blue (2.5,2); purple
(2,2.5). The content of the quasimodes evolves from T+,T− and linear
combinations of S, T0 at weak drive into the combinations, 1

2 (T+ ±√
2T0 + T−), one superradiant mode, S, and one subradiant mode,

1√
2
(T+ − T−).

on the electron and hole, respectively, i.e., the detunings of
the pair-partners from the resonance. By retaining only z

components, we assumed that B0 � b0. We will also assume
that γB0 � �R , which allows us to employ the rotating wave
approximation. In the rotating frame, the amplitudes of T+,
T−, T0, and S components of the wave function are related by
a system,

(χ − δ)AT− = �R√
2
AT0 , (2)

(χ + δ)AT+ = �R√
2
AT0 , (3)

χAS = −δ0AT0 , (4)

χAT0 = −δ0AS + �R√
2

(AT+ + AT− ), (5)

where χ is the quasienergy (see Fig. 3), while parameters δ0

and δ are defined as

δ0 = 1

2
(δe − δh), δ = 1

2
(δe + δh). (6)

The quasienergies satisfy the equation

χ2(χ2 − δ2 − �2
R

) − δ2
0(χ2 − δ2) = 0, (7)

with obvious solutions

χ = ±1

2

[
(δ0 + δ)2 + �2

R

]1/2 ± 1

2

[
(δ0 − δ)2 + �2

R

]1/2
. (8)

It follows from Eqs. (2) and (7) that for large �R � δ0,δ, the
pair of quasienergies, which approaches χ = 0 (see Fig. 3),
corresponds to the modes S and 1√

2
(T+ − T−), while the

quasienergies that approach χ = ±�R correspond to the
combinations 1

2 (T+ ± √
2T0 + T−), respectively.
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FIG. 3. (Color online) (a) The evolution of quasienergies with
amplitude of the driving field is plotted from Eq. (10) for parameters
(δτ,δ0τ ) = (2,2.5). Quasienergies evolve from ±δ, ± 1

2

√
(2δ0τ )2 − 1

to 0, ± �R . At small �R , the quasienergies are well resolved (b).
Merging of two quasienergies at large �R is accompanied by splitting
of their widths (c), which is a manifestation of the Dicke physics.

IV. DRIVEN SPIN-PAIR WITH RECOMBINATION

Including recombination from S requires the analysis of the
full equation for the density matrix,

iρ̇ = [Ĥ ,ρ] − i

2τ
{	S,ρ}, (9)

where τ is the recombination time, and 	S is the projector
onto the singlet subspace. The matrix corresponding to this
equation is 16 × 16. The 16 eigenvalues can be cast in the
form χi − χ∗

j , where χi and χj satisfy the quartic equation

χ

(
χ + i

τ

) (
χ2 − δ2 − �2

R

) − δ2
0(χ2 − δ2) = 0, (10)

which generalizes Eq. (7) to the pair with decay. For slow
recombination, b0τ � 1, the quasienergies acquire small
imaginary parts, which can be found perturbatively from
Eq. (10):

δχ = − i

4τ

⎛⎝1 ±
∣∣δ2

0 − δ2 − �2
R

∣∣√(
δ2 + δ2

0 + �2
R

)2 − 4δ2
0 δ2

⎞⎠ . (11)

Naturally, in the limit �R → 0, Eq. (11) yields either δχ =
−i/2τ for S and T0 states, and δχ = 0 for the trapping states
T+ and T−. Less trivial is that at large �R � δ0,δ, the values
δχ again approach δχ = −i/2τ and δχ = 0. The evolution of
the imaginary parts of the quasienergies with �R is illustrated
in Fig. 2.

V. CURRENT AT A WEAK DRIVE

Finite �R � δ,δ0 ∼ b0 leads to finite lifetimes of the
trapping modes. Expanding Eq. (11), we get

τtr = 1

2|χ | = 4τ
(
δ2 − δ2

0

)2

�2
Rδ2

0

. (12)

Once τtr is known, we can employ the simplest quantitative
description of transport15 based on the model Ref. 8 to express
the correction, δI (�R), to the current caused by the ac drive.
Within this description, a pair at a given site is first assembled,

then undergoes the pair-dynamics and either recombines or
gets disassembled depending on which process takes less
time; see Fig. 1 (a). These three steps are then repeated,
so that the passage of current proceeds in cycles. Then the
current associated with a given pair is equal to 1

〈t〉 , where
〈t〉 is the average cycle duration. Importantly, all the initial
spin configurations of the pair have equal probabilities. For
simplicity, it is assumed15 that, on average, the times of
assembly and disassembly are the same τD � τ . This input is
sufficient to derive the following expression for δI (�R)

δI (�R)

I (0)
= τ−1

tr

τ−1
tr + 2τ−1

D

= �2
Rδ2

0

�2
Rδ2

0 + 8
(
δ2 − δ2

0

)2 τ
τD

, (13)

where I (0) = 1
τD

. The remaining task is to average Eq. (13)
over the distributions of the hyperfine fields, or equivalently,
over δ and δ0. Since we consider a weak drive, this averaging
is greatly simplified. Indeed, the major contributions to the
average comes from narrow domains |δ − δ0| ∼ �R( τD

τ
)1/2

and |δ + δ0| ∼ �R( τD

τ
)1/2, much narrower than b0. On the

other hand, these domains are wider than �R , which justifies
the expansion Eq. (12). Replacing the distribution functions of
(δ + δ0) and (δ − δ0) by 1√

πb0
, we get

〈δI (�R)〉
I (0)

= �2
R

(2π )1/2b0

∫
d(δ − δ0)

�2
R + 32τ

τD
(δ − δ0)2

+ �2
R

(2π )1/2b0

∫
d(δ + δ0)

�2
R + 32τ

τD
(δ + δ0)2

(14)

=
(πτD

2τ

)1/2
(

�R

b0

)
, (15)

i.e., the radiation-induced correction is linear in �R . To
understand this anomalous behavior qualitatively, notice that
small (δ + δ0) and (δ − δ0) correspond to small δe and δh,
respectively. Therefore, the linear δI (�R) comes from config-
urations of hyperfine fields in which one of the pair-partners
is on-resonance;19–21 this partner responds strongly to the ac
drive. The ratio �R/b0 is the portion of such configurations.
The upper boundary of the weak driving domain is set by the
condition �R

√
τD/τ � b0, which allowed us to replace the

distribution functions of δ − δ0, δ + δ0 by a constant. It is also
seen from Eq. (13) that for �R � b0

√
τD/τ that the correction

saturates at 〈δI 〉/I (0) = 1. This saturation applies as long as
T+ and T− are the trapping eigenmodes. As was mentioned
above, upon increasing �R , the trapping eigenmodes evolve
into 1

2 (T+ ± √
2T0 + T−) and we enter the strong-driving

regime.

VI. STRONG DRIVE

Expanding Eq. (11) in the limit �R � δ,δ0 yields the
expression τtr ≈ τ�2

R/δ2
0 for the lifetime of the trapping

eigenmodes. The same steps that led to Eq. (13) give rise
to the following negative correction to the current:

δI (�R)

I (0)
= 1 −

(
τ

τD

)
�2

R

δ2
0 + τ

τD
�2

R

. (16)

We see from Eq. (16) that at �R � ( τD

τ
)1/2b0 the current is

the same as it was in the absence of the ac drive. This is
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due to the fact that both in the absence of drive and in this
domain the number of long-living modes is two. The return of
δI (�R) to zero takes place over a parametrically broad interval√

τ
τD

< �R

b0
<

√
τD

τ
. The slope is calculated upon averaging

Eq. (16) over δ0, which again can be carried out after replacing
the distribution function by 1√

πb0
and yields

1

I (0)

∂〈δI 〉
∂�R

= −
(

τ

πτD

)1/2 1

b0
. (17)

We see that the strong-field slope is τD/τ times smaller than
the weak-field slope given by Eq. (14); this is consistent with
the fact that the domain of the current drop is τD/τ times
broader than the domain of current growth.

In fact, the saturation predicted by Eq. (16) precedes another
domain of change of current, which stems from bifurcation in
lifetimes of S,T0 modes at large �R; see Fig 2. To capture
this bifurcation analytically, notice that for large �R Eq. (11)
predicts for δχ = − i

2τ
for the 1√

2
(T+ − T−)-mode, while the

zero-order value of quasienergy falls off with �R as δ0δ/�R .
Therefore, when �R exceeds δδ0τ , the correction would
exceed the zero-order value and the perturbative treatment
becomes inapplicable. Instead, we must make use of the fact
that quasienergy is small, which allows us to simplify the
quartic Eq. (7) to

χ2 + i

τ
χ − δ2

0δ
2

�2
R

= 0. (18)

The bifurcation of the lifetimes is revealed in the imaginary
parts of the quasienergies, which are given by

χ± = − i

2τ

[
1 ±

√
1 − 4δ2

0δ
2τ 2

�2
R

]
; (19)

see Fig. 2. For large �R , solution χ+ ≈ −i/τ corresponds to
the S mode, while the solution χ− ≈ −iδ2

0δ
2τ/�2

R evolves
into a long-living mode 1√

2
(T+ − T−). In other words, strong

ac drive induces a third long-living mode, which decouples
from S and therefore cannot recombine. At the same time, the
decoupling of S from all other triplet states makes its lifetime
two times shorter than in the absence of drive. Note that there is
a full formal correspondence between the solutions χ+, χ− and
the superradiant and subradiant modes in the Dicke effect.18

On the physical level, in the Dicke effect, the subradiant mode
acquires a long lifetime due to weak overlap with a photon
field, while the long lifetime of the mode 1√

2
(T+ − T−) is due

to weak overlap with the recombining state S. With trapping
by the subradiant mode incorporated, the correction to current
takes the form

δI (�R)

I (0)
= − �2

R(
δ2

0δ
2ττD + �2

R

) . (20)

It can be seen that the denominator in Eq. (20) defines
a narrow domain δ0 ∼ δ ∼ �

1/2
R /(ττD)1/4, which yields the

major contribution to 〈δI (�R)〉. Physically, this corresponds
to configurations of the hyperfine fields in which both pair-
partners are on-resonance. This again leads to the linear cor-
rection to 〈δI (�R)〉, which can be rewritten in dimensionless

1.0

0.5

0.0

0.5

1.0

-

-

δI τD

B1

b0

τ
τD τ

τD b0
τ τD

a  b

c

FIG. 4. (Color online) Schematic dependence of the radiation-
induced correction to the current on the amplitude of the ac drive.
Three prominent domains (a), (b), and (c) are described by Eqs. (14),
(20), and (21), respectively.

units as

〈δI (�R)〉
I (0)

= − �R

πb2
0
√

ττD

∫
dx

∫
dy

1

x2y2 + 1
. (21)

The double integral in Eq. (21) diverges, but only logarith-
mically, as ln[b2

0(ττD)1/2/�R]. In performing the averaging
Eq. (21), we again replaced the distribution functions of
δ, δ0 by 1√

πb0
. This replacement is justified provided the

characteristic δ, δ0 are much smaller than b0. The latter
condition is equivalent to the condition that the argument of
the logarithm is big. We should also check the validity of the
expansion of the square root in Eq. (19). For characteristic δ, δ0

the combination δ2δ2
0τ

2/�2
R is ∼τ/τD � 1; i.e., the expansion

is valid. Overall dependence of 〈δI 〉 on �R exhibiting three
prominent domains, Eqs. (14), (16), and (21), is sketched in
Fig. 4.

VII. DISCUSSION

The prime experimental finding reported in Ref. 17, which
motivated the present paper, is that the current blocking
responsible for the OMAR effect8 is effectively lifted under
magnetic-resonance conditions. We demonstrated that this
lifting is a natural consequence of developing of the Rabi os-
cillations in one of the spin-pair partners. It is also known19–21

that Rabi oscillations in organic semiconductors, detected by
pulsed magnetic resonance techniques, are dominated by pairs
with one partner is on-resonance as well. The reason why
both effects are due to the same sparse objects is that these
objects are more responsive to the ac drive than nonresonant
pairs. At the same time, the phase volume of such pairs is
linear in �R . Unfortunately, in the device design in Ref. 17,
the magnitude of ac drive directly in the sample could not
be measured. This precludes more quantitative comparison of
our predictions with the experimental results. We hope that this
comparison will be possible in the future as the experimental
technique, used in Ref. 17, matures.

Besides the physical picture in the weak-driving domain, we
also predict that the overall evolution of current with increasing
B1 is much more complex and involves a maximum followed
by a drop and subsequent saturation; see Fig. 4. Note that strong
deviation from linear dependence of δI sets in already at weak
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driving fields, B1 � b0. The nonmonotonic behavior of current
with ac drive is very unusual; its experimental verification
would be a crucial test of radiation-induced trapping, which
we predict.

Throughout the paper we assumed that the driving fre-
quency exactly matches the Zeeman splitting γB0. In fact, in
Ref. 17, the sensitivity of OMAR to the ac drive extended
over a sizable interval of applied dc fields centered at B0. It
is straightforward to generalize our consideration to a finite
detuning � = γB0 − ω0. Detuning enters the theory as a
shift of the center of the Gaussian distribution of parameter
δ from δ = 0 to δ = �. Below we simply list the changes in
the correction δI caused by strong detuning � � γ b0. These
changes are different in different domains of the driving field
shown in Fig. 4. For weak driving, the correction δI is given
by

δI (�R)

I (0)
= �2

Rb2
0τD

8�4τ
. (22)

It emerges upon neglecting the �2
R term in the denominator of

Eq. (13) and applies in the domain �R � � if � exceeds not

only b0 but also b0

√
τD

τ
. Then, unlike Fig. 4, the change δI

I (0)

does not reach one. The maximal change is ∼b2
0τD/�2τ � 1.

Interestingly, the domain (c) in Fig. 4 is affected much weaker
by the detuning, �. Instead of Eq. (21), we have

δI (�R)

I (0)
= − �R

�b0
√

πττD

; (23)

i.e., the linearity in �R persists while the slope is suppressed
by �/b0.

In conclusion, we note that one of our main findings,
radiation-induced Dicke physics, goes way beyond the spin-
dependent processes in organics. Previously the Dicke physics
implied that one of the compound excited states of the
system is orthogonal to the ground state, and hence the
radiative decay is slow. We found that this orthogonaliza-
tion of one of the excited states emerges in the “rotating
frame” under strong enough ac drive and inhibits nonradiative
recombination.
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11F. J. Wang, H. Bässler, and Z. Valy Vardeny, Phys. Rev. Lett. 101,

236805 (2008).

12F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys.
Rev. Lett. 99, 257201 (2007).

13T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li,
E. Ehrenfreund, and Z. V. Vardeny, Nat. Mater. 9, 345 (2010).
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M. Wohlgenannt, A. D. Kent, and M. E. Flatté, Phys. Rev. B 87,
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