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Design and characterization of nonlinear functions for the transmission of
a small signal with non-Gaussian noise

Seiya Kasai,1,* Yukihiro Tadokoro,2 and Akihisa Ichiki3
1Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University,

Sapporo 060-0814, Japan
2Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan

3Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan
(Received 20 September 2013; published 16 December 2013)

We design nonlinear functions for the transmission of a small signal with non-Gaussian noise and perform
experiments to characterize their responses. Using statistical design theory [A. Ichiki and Y. Tadokoro, Phys. Rev.
E 88, 012124 (2013)], a static nonlinear function is estimated from the probability density function of the given
noise in order to maximize the signal-to-noise ratio of the output. Using an electronic system that implements the
optimized nonlinear function, we confirm the recovery of a small signal from a signal with non-Gaussian noise.
In our experiment, the non-Gaussian noise is a mixture of Gaussian noises. A similar technique is also applied to
the optimization of the threshold value of the function. We find that, for non-Gaussian noise, the response of the
optimized nonlinear systems is better than that of the linear system.
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I. INTRODUCTION

Nonlinear systems often exhibit beneficial responses to
a small, noisy signal. These include stochastic resonance
(SR) [1–5], noise-induced linearization [6], noise-enhanced
stability [7], and noise-assisted logic operations [8]. The
response is obviously correlated with the nonlinearity and
noise characteristics, and understanding this relationship has
been a key issue in both science and engineering. There have
been several studies on the noise-characteristic dependence
of the response [9–12], but in most cases, the behavioral
approach has been used for analysis due to the difficulties
of a full analytical treatment of a nonlinear function and noise.
Recently, Ichiki and Tadokoro reported an analytical approach
to finding a static nonlinear function that is optimized to
enhance a small signal buried in a non-Gaussian noise [13].
Their approach is based on Fisher’s optimization, so we call
it functional Fisher’s optimization (FFO). It systematically
deduces an optimal nonlinear function from the characteristics
of the given noise. In this paper, we investigate the FFO-based
design of a nonlinear function for the transmission of a small
signal with non-Gaussian noise. We demonstrate it for two
scenarios: the full design of a nonlinear function and the
optimization of a parameter in a threshold function. We show
that the design approach is feasible, not just for a full design,
but also for optimizing the parameters in a given function. For
the non-Gaussian noise, we used a noise mixture generated by
a linear combination of a pseudorandom bit sequence (PRBS)
and a Gaussian noise. This is a typical model for ambient noise
that consists of a mixture of an artificial electromagnetic signal
from wireless communications and natural noise [14–16]. It
is also used in image restoration [17,18]. We used electronic
devices to implement the nonlinear functions that we designed
and then compared their responses to those of a conventional
linear system.

*Corresponding author: kasai@rciqe.hokudai.ac.jp

II. DESIGN OF A NONLINEAR FUNCTION

The FFO approach to the design of a static function f (x)
for the transfer of a small, noisy signal is to find the f that
maximizes the signal-to-noise ratio (SNR) of the output on
the basis of Fisher’s optimization [13]. We assume that ξ (t)
is white noise, the signal S(t) is sufficiently small compared
to the noise, and the noise component in the output is given
by the variance of the output. Applying the linear response
theory to the output f (S + ξ ), the output SNR is given by

SNR = 〈f ′(ξ )〉2PS

〈f 2(ξ )〉 − 〈f (ξ )〉2
, (1)

where 〈f 〉 denotes the expected value of f and PS is the signal
power of S. An optimum f is estimated from δSNR/δf = 0.
The optimum f is then given by

f = a − b
∂lnρ (x)

∂x
, (2)

where ρ is a probability density function (PDF) of the noise
and a and b are constants (b > 0). The optimum function
depends only on the noise, not on the signal, because the
input signal intensity is assumed to be sufficiently small
compared to the noise intensity. This assumption is valid
when the contribution of the input signal to the denominator
of Eq. (1) is ignorable, namely, 〈f 2(ξ + S)〉 − 〈f (ξ + S)〉2 ≈
〈f 2(ξ )〉 − 〈f (ξ )〉2. Note that this constraint also depends on
the nonlinear function itself. In our experiment, the assumption
is reasonably valid when the noise power is 1 order of
magnitude larger than the input signal power. Equation (2)
suggests that a linear function is appropriate for the Gaussian
noise. A Gaussian noise gives the maximum entropy for a
fixed noise variance. This means that there is no choice of
transfer functions to reduce a Gaussian noise. Thus, the most
appropriate function is one that transfers the signal without
distortion: a linear function. On the other hand, if the noise
is non-Gaussian, this shows that there is a suitable nonlinear
function that provides an SNR that is better than that of the
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linear function. There exists an appropriate nonlinear function
that maximizes the entropy of the noise.

The FFO approach can also be applied to optimizing a
parameter in a given nonlinear function. In most cases, a
nonlinear phenomenon is described by a specific equation.
To control the behavior of the system, we often need to control
a parameter in the given equation. As an example, consider
a threshold function, f th, such as a single step function or
a sigmoid function: fth(x � θ ) = 1 and fth(x < θ ) = 0. The
parameter that should be optimized is the threshold value θ .
The threshold function is known to cause SR, and the optimum
threshold value has been discussed for specific noises in terms
of this phenomenon [10,12]. Note that, in the case of Gaussian
noise, the SR in the static threshold function cannot exceed
the response in the linear function from Eq. (2). However, in
the case of non-Gaussian noise, the threshold function has a
positive possibility of exceeding the linear system. The FFO
approach is applicable to a general noise for which the PDF
has been identified. When S is small enough, the output signal
is expressed as S 〈dfth(ξ − θ )/dξ 〉 = Sρ(θ ). We let P+ denote
the probability that the level of the output is high. Then the
resulting SNR of the output is

SNR = S2ρ2 (θ )

P+ (1 − P+)
,P+ =

∫ ∞

θ

ρ (x) dx. (3)

We find the optimum threshold value when the SNR is
maximized, that is, δSNR/δθ = 0. Therefore,

2
dρ (θ )

dθ
+ ρ2 (θ )

1 − 2P+
P+ (1 − P+)

= 0. (4)

The solution of this equation provides the optimum thresh-
old value, which depends only on the PDF of the noise.
When the dependence of P+ on θ is small, the SNR has a
configuration similar to ρ2(θ ), and the maximum peak position
of ρ2(θ ) provides the optimum θ .

III. EXPERIMENT

We used an electronic system to examine the feasibility
of the FFO-based design and optimization. For a small target
signal, we used a sinusoidal wave with a frequency of 1 kHz
and an amplitude of 50 mV. For the non-Gaussian noise, we
used a Gaussian mixture (as described above) generated by
adding a PRBS and a Gaussian noise, both from conventional
function generators. The bit rate of the PRBS was 1 Mbit/s
and the amplitude of the bit was 1.27 V. The bandwidth and
the standard deviation of the Gaussian noise component were
1 MHz and 0.32 V, respectively. The noise was biased at 2.02 V.
Compared to the signal frequency, the noise can be considered
white. Figure 1(a) shows the wave form of the measured noise.
A histogram of the noise is shown in Fig. 1(b). The theoreti-
cal formula of the PDF, ρ(x) = {0.5 exp[(x − μ1)2/2V 2

rms] +
0.5 exp[(x − μ2)2/2V 2

rms]}/
√

2πV 2
rms, where μ1 and μ2 are the

peak positions of the two Gaussian noise components and Vrms
2

is the variance of each component, was a good fit. The peaks
of the PDF were observed when the noise voltages were 1.38
and 2.65 V. The nonlinear functions were implemented using
commercial electronic devices. The input and output wave
forms were obtained by a sampling oscilloscope. The sampling
rate was 10 times larger than either the bandwidth of the
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FIG. 1. (Color online) Generated mixed noise: (a) wave form and
(b) histogram. Solid curve shows the theoretical probability density
function.

Gaussian noise or the bit rate of the PRBS. The response was
evaluated by determining the correlation coefficient between
the target signal and the output wave forms. The total length of
the time series was 20 ms. Thus 20 periods of the input signal
were used for characterization.

IV. RESULTS AND DISCUSSION

A. Optimum nonlinear function

For the noise in Fig. 1, the optimum nonlinear function was
designed using Eq. (2). The theoretical transfer curve obtained
from the analytical PDF curve in Fig. 1(b) is shown as a broken
line in Fig. 2. The curve has a negative slope near the input
voltage Vin, which was 2 V; in other regions, it is linear. This
transfer characteristic was electronically implemented using
a logic inverter and two resistors, as shown in the inset of
Fig. 2. The measured curve from this device is shown as a
solid line in Fig. 2. This device reasonably represented the
designed characteristic, with only a small discrepancy around
the region of the negative slope. The device was able to respond
to input signals of over 1 MHz.

Examples of the measured input and output wave forms
are shown in Fig. 3. The input for the nonlinear system
was the sum of the target sinusoidal wave and the noise.
We also considered this the output of the linear system. In
the output of the nonlinear system shown in Fig. 3(a), the
sinusoidal wave can be seen in the envelope and it was more
obvious than it was in the linear system. To quantify this
difference, we evaluated Pearson’s correlation coefficient C1

between the target signal and the output wave forms. For the
nonlinear system, C1 = 0.16, which was larger than that of
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FIG. 2. (Color online) Theoretical and experimental transfer
curves of the optimized nonlinear function for the mixed noise. Inset
shows the electronic circuit for implementation of the function.

the linear system, 0.07. This difference is clearly seen in
the filtered output wave forms, as shown in Fig. 3(b). The
cutoff frequency of the filter fC was 10 kHz. Filtering was
performed with a low-pass filter (LPF) by computing moving
averages on the sampled data. The length of the moving
average window was 1000 data points for 10-M samplings/s
data, which corresponds to time lengths from 100 μs. The
nonlinear function suppresses the noise in the bandwidth of the
target signal, but the noise outside the band remains. The LPF
suppresses the noise outside the signal bandwidth and clarifies
the effect of the nonlinear function. The nonlinear system with
the LPF was able to recover the original input signal much
better than did the linear system with the LPF. The input-output
correlation coefficients after filtering were 0.92 and 0.64 for
the nonlinear and linear systems, respectively. These results
demonstrate the feasibility of the FFO-based design.

To clarify the effect of low-pass filtering on nonlinear
output, we evaluated the correlation coefficient as a function
of the LPF cutoff frequency f C. The results are shown in
Fig. 4. The correlation coefficient greatly increased as the
cutoff frequency decreased. The curve had a peak, since the
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FIG. 3. (Color online) Examples of the measured input and out-
put wave forms (a) before filtering and (b) after filtering.
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FIG. 4. (Color online) The input-output correlation coefficient as
a function of LPF cutoff frequency for the optimum nonlinear and
linear systems.

target signal itself was filtered when f C was close to the
frequency of the target signal. The filtered output of the linear
system showed a similar curve; however, the correlation of
the nonlinear system was always greater than that of the linear
system. This result indicated that, for the present configuration
of signal and noise, the performance of the optimum nonlinear
function is superior. In terms of enhancing the response of a
system, the benefit of the nonlinear function is acquired by the
combination with an appropriate filtering. As shown in Fig. 4,
we cannot achieve a peak value near unity with the correlation
coefficient without the optimized nonlinear function.

The fact that the nonlinear system for the mixed noise
performs better can be understood by considering the compres-
sion of the PRBS component through the Z-shaped negative
transfer characteristic. This function can suppress the noise
component existing within the bandwidth of the input signal.
The nonlinear function can be approximated by two linear
functions: f = 0.83 Vin + 0.91 (Vin < 2 V) and f = 0.83 Vin

(Vin > 2 V). When the input is less than 2 V and the PRBS
is at a low level, the nonlinear function offsets the output by
+0.91 V. This offset almost cancels the PRBS component
with the amplitude of 1.27 V. A margin between the offset
and the PRBS amplitude arises from the Vrms of the Gaussian
noise component. The above process results in an output that
consists of a target signal with a nearly Gaussian noise, and
the system behaves like a linear system. In a conventional
linear system, it is obvious that the SNR of the output with
Gaussian noise is better than that with a mixture of the same
Gaussian noise and a PRBS, since the power of the noise
is increased by adding the PRBS. However, the SNR of the
optimum nonlinear function with the mixed noise is somewhat
smaller than that of the linear system with Gaussian noise. This
is because the PDF of the Gaussian noise has long tails, which
causes error in the switching of the two curves: for example,
the high offset curve is selected even when the PRBS is at
a high level. We should mention that the FFO-based design
optimizes the function that includes this effect. In this study,
the Vrms (0.32 V) of the Gaussian noise was sufficiently smaller
than the offset (0.91 V), and thus this error was small.
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FIG. 5. (Color online) (a) Measured transfer characteristics of
the threshold device in which the threshold value was systematically
controlled. (b) Theoretical output SNR in the threshold function as
a function of the threshold value. For comparison, the PDF of the
mixed noise is also shown.

B. Threshold function with optimized parameter

Next we used FFO on the optimization of the threshold
value of a threshold function. This parameter optimization
should be useful because a practical system often needs to
achieve a better response under a given transfer function,
rather than completely designing a new function. We also
considered the transmission of the weak signal with the mixed
noise. A standard comparator was used as the threshold device.
Figure 5(a) shows the measured transfer characteristics. The
device exhibited a sharp threshold curve with a negligibly
small hysteresis. The threshold value could be systematically
controlled by the external voltage. Figure 5(b) shows the
theoretical SNR for the mixed noise shown in Fig. 1, calculated
from Eq. (3), as a function of the threshold value θ . The
curve of the estimated SNR of the output had a double peak,
which is similar to the PDF of the mixed noise. We believe
that this result is due to Eq. (3) being mainly dominated by
ρ2(θ ): the denominator on the right-hand side of the equation,
corresponding to the standard deviation of the output noise,
depends on the integral of ρ and it changes slowly as a
function of θ . The positions of the peak provide the optimized
threshold values that satisfy Eq. (4). We found two optimum
threshold values, θ = 1.24 and 2.78 V. The positions of the
peak of the estimated SNR values shifted slightly away from
the peaks in the noise PDF; this was due to θ dependence of
the denominator on the right-hand side of Eq. (3).

Figure 6 shows examples of the measured input and output
wave forms of the systems of the threshold function, with the
threshold value of approximately the second peak (θ = 3 V)
and the central valley of the estimated SNR (θ = 2 V). The
mixed noise shown in Fig. 1 was added to the signal. The output
of the threshold system was composed to have an impulse train
with the same amplitude. When θ = 3 V, the density of the
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0 1 2 3 4 5

Output:  = 2 V

Output:  = 3 V

Noise added input

Target signal

FIG. 6. (Color online) Measured input and output wave forms of
the threshold device when the threshold was optimized (θ = 3 V) and
not optimized (θ = 2 V). Gray hatched regions indicate the periods
in which the target signal had a positive amplitude. When θ = 3 V,
the pulse density was high in the gray region, indicating that the
information in the target signal reflects the output.

impulses was modulated by the amplitude of the target signal.
This behavior was similar to the pulse density modulation
(PDM) or dither [3,19], where the amplitude of the target
signal was converted to the density of the impulses. When
θ = 2 V, a high-density impulse train was observed; however,
the density seemed to be uniform. These results suggest that
the efficiency of the information conversion depends on the
threshold value.

We quantified the response of the threshold system by
finding the correlation coefficient between the target signal and
the output wave forms as a function of the threshold voltage.
The result is shown in Fig. 7. To clarify the threshold
dependence of the response, low-pass filtering with a cutoff
frequency of 167 kHz was performed on the output before cal-
culating the correlation coefficient. This process corresponds
to decoding the PDM signal, and thus the target signal is
reproduced. The curve of the threshold system exhibited a
double peak, as was expected from the theory. The theoretically
predicted curve was calculated from the SNR in Fig. 5(b) using
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FIG. 7. (Color online) Input-output correlation coefficient for the
threshold device as a function of the threshold value.
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an approximation formula, C1 ∼ (1 + 1/SNR)−1/2; the plot is
shown in Fig. 7. In this calculation, the amplitude of the target
signal in Eq. (3) was adjusted to reflect the effect of the fil-
tering; this barely changed the configuration of the curve. The
results of the experiment were well explained by the theory and
verified the validity of the FFO-based parameter optimization.
The performance of the optimum nonlinear function is still
better than that of the threshold function. The input-output
correlation coefficients at a cutoff frequency of 167 kHz for the
optimum and threshold functions are 0.51 and 0.2, respectively.

The correlation coefficient for the linear system is shown as
a dashed line in Fig. 7. At the peaks, the correlation coefficient
for the threshold system is larger than that for the linear system.
The threshold system with the optimized θ better reproduced
the target signal than did the linear system with noise. The
superior performance of the simple threshold function for the
mixed noise is thought to be due to the truncation of the PRBS
component in the noise-added input, similar to that of the
Z-shaped nonlinear function. In the noise used in this study,
the power of the PRBS component PPRBS was much larger
than that of the Gaussian noise component PGauss, and the
components were uncorrelated because they were generated
independently. Thus the SNR in the linear system can be
approximately evaluated by PS/(PPRBS + PGauss) ∼ PS/PPRBS

(PPRBS � PGauss). On the other hand, the threshold system
omits the PRBS component when the threshold is adjusted to a
high level of the PRBS components; this occurs at the second
peak of the PDF of the noise. Thus the system effectively
responds to the signal only with Gaussian noise. This effect
can also be obtained when the threshold is adjusted to the
first peak of the PDF of the noise. The SNR of the output
[Eq. (3)] at the second peak of the PDF of the noise can be
approximated by (4/3π )PS/PGauss. In the present model, the
output noise is evaluated by the variance of the output of the
nonlinear function. We assume the small input signal, and
then the denominators of Eqs. (1) and (3) correspond to the
power of the output fluctuation. We measured the correlation
coefficient as a function of PGauss at large PPRBS and found
that the correlation in the threshold system decreased as PGauss

increased, whereas that in the linear system was small and
almost independent of PGauss. For PPRBS � PGauss, the SNR in
the threshold system was higher than that in the linear system.

The difference in the threshold point between the
fully designed optimum function and the threshold step
function arises from the difference in the details of the
information representation. Using the step function, the signal
information is represented with the density of the output im-
pulse train. The information transfer efficiency is maximized
when the threshold is adjusted to the point at which the change

of the PDF of the noise by the input is the largest. This
increases the output SNR in terms of increasing the numerator
in Eq. (1). Considering Eqs. (1) and (2), the noise PDF with
two similar peaks (as shown in Fig. 2) results in two optimal
points. In the case of the optimum Z-shaped function, the
impulses in the output are weighted through the finite slope
in the outside of the negative slope region. This operation
enhances the transmission of the input signal information
owing to modulating not only the impulse density but also the
amplitude. In addition, the negative slope around the threshold
compresses the PRBS component of the noise, which also
increases the output SNR by decreasing the denominator in
Eq. (1). These two additional effects are boosted when the
threshold point is at the center of the symmetric PDF of the
noise: when the threshold is adjusted at one peak of the noise
PDF, this function amplifies the noise in another peak, resulting
in the decrease of the output SNR.

The present method can be applied to any kind of noise
when the probability density function of the noise ρ is known
in advance and the noise intensity is larger than that of
the input signal. The improvement factor of the response
depends on the noise characteristics. From Eq. (1), in the
case that the output noise power is constant—namely, the
denominator of Eq. (1) is the same value—the output SNR
increases as the derivative of the transfer function f becomes
large. The derivative of f is approximately evaluated by
f ′ ∼ ρ−2(∂ρ/∂x)2 − ρ−1(∂2ρ/∂x2). This formula suggests
that even with the same noise power, the noise having the
large derivative at the inflection point of results in the large
SNR in the present method. We should also mention that when
the noise PDF has a complicated form, the implementation of
the nonlinear function is difficult, which will be a constraint
in the present method.

V. CONCLUSION

We designed a nonlinear function based on the functional
Fisher optimization (FFO) approach to transfer a small signal
buried in a non-Gaussian noise. We also used the FFO
approach to optimize the threshold parameter in the threshold
function for non-Gaussian noise. We electronically imple-
mented the nonlinear functions and experimentally found
that both nonlinear functions performed better than the linear
system, demonstrating the feasibility of the FFO approach. The
mechanism for the better response of the nonlinear functions
is understood by the selective compression of the noise
component that carries the smallest amount of information
about the target signal.
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