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Spin caloritronics in magnetic tunnel junctions: Ab initio studies
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This Letter presents ab initio calculations of the magneto-thermoelectric power (MTEP) and of the spin-
Seebeck coefficient in MgO-based tunnel junctions with Fe and Co leads. In addition, the normal thermopower is
calculated and gives, for pure Fe and Co, quantitative agreement with experiments. Consequently, the calculated
values in tunnel junctions are a good estimation of upper limits. In particular, spin-Seebeck coefficients of more
than 100 μV/K are possible. The MTEP ratio exceed several 1000% and depends strongly on temperature. In the
case of Fe leads the MTEP ratio diverges even to infinity at certain temperatures. The spin-Seebeck coefficient
as a function of temperature shows a nontrivial dependence. For Fe/MgO/Fe even the sign of the coefficient
changes with temperature.
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The emerging research field of spin caloritronics1 combines
spin-dependent charge transport with energy or heat transport.
In comparison to thermoelectrics the spin degree of freedom
is considered as well. The influence of a temperature gradient
on a spin-dependent current and vice versa was pointed out
by Johnson and Silbsee.2 Since then a number of effects have
been discussed on the nanometer scale, such as thermal spin-
transfer torque,3 magneto-thermoelectric power (MTEP) in
metallic multilayers,4 thermally excited spin-currents,5 and
magneto-Peltier cooling.6

Recently the spin-Seebeck effect was experimentally dis-
covered by Uchida et al.7 in a NiFe alloy. However, the
interpretation of the measured effect is rather complicated.
Thereby, the spins have different electrochemical potentials μ↑
and μ↓ due to a temperature gradient �T across the sample.
The spin-Seebeck coefficient is defined as

Ss = μ↑ − μ↓

�T
. (1)

There are in principle two effects that give rise to a spin voltage
under an applied temperature gradient. The effect measured
by Uchida et al. was recently explained by a spin-pumping
effect at the contact between the ferromagnet and the normal
electrode.8

The other effect is the analog to the classical charge-
Seebeck effect. The origin of this effect is a different
asymmetry of the density of states (DOS) around the Fermi
energy in both spin channels. The asymmetry of the DOS
is the main reason for a thermopower (or Seebeck voltage)
in classical thermoelectrics. Introducing a magnetic material
with different asymmetry in the DOS for both spins leads to
different Seebeck coefficients for both spins S↑ and S↓. Both
spin channels can be seen as a thermocouple leading to the
spin-Seebeck coefficient

Ss = S↑ − S↓. (2)

For the classical thermopower a charge is spatially separated,
whereas for the spin-Seebeck effect both spins are unequally
occupied at the same position. Therefore, spin relaxation
processes will destroy this effect if the sample size is larger then
typical spin-diffusion lengths. Consequently, half-metallic
materials are promising. Nevertheless, the understanding of

the spin caloritronic effects and also for normal magnetic
metals is of fundamental interest. Surprisingly, Uchida et al.7

measured a spin-Seebeck coefficient although the sample size
was quite a bit larger than the spin-diffusion length. Therefore,
this measured effect has another origin as already pointed out
above.

Due to these two different effects there is confusion about
the nomenclature. In particular, the term “spin-Seebeck effect”
is used for both effects. The analog of the charge-Seebeck
effect is given by the different Seebeck coefficients in both
spin channels. Therefore, it is also possible to call this
effect the spin-dependent Seebeck effect. However, this is
again confusing with respect to S↑ and S↓, which are the
spin-dependent Seebeck coefficients. Therefore, throughout
this Letter we will use the nomenclature “spin-Seebeck effect”
to mean the analog to the charge-Seebeck effect.

The effect of MTEP is the dependence of the normal charge-
Seebeck coefficients on the relative magnetic orientation θ of
both magnetic layers. The MTEP ratio is given by

S(0◦) − S(θ )

min[|S(0◦)|,|S(θ )|] . (3)

Gravier et al.4 measured for θ = 180◦ a MTEP ratio of about
30% in all-metallic junctions.

In this Letter we investigate the spin-Seebeck effect (SSE)
and the MTEP in magnetic tunnel junctions. Thereby, we use
ballistic transport that is, in particular, without spin-diffusion
effects. For MTEP this is only a minor approximation because,
for the thermoelectric power (charge-Seebeck coefficient), the
electric charges are spatially separated which makes this effect
robust. In the case of the SSE, spin-flip scattering destroys
the effect leading to a vanishing spin voltage if the sample
size is larger than the spin diffusion length. Consequently, our
investigations aim to give an upper limit of what is possible.
This means that our calculated spin-Seebeck coefficients are
basically only valid next to the barrier.

For a large Seebeck coefficient a strong asymmetry within
the density of states is advantageous. In addition, for the spin-
Seebeck effect a strong asymmetry within the spin channels
is necessary. The latter is fulfilled for MgO-based tunnel
junctions with Fe or Co leads that show a very high tunnel
magneto resistance (TMR) ratio.9 In such junctions MgO acts
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as a symmetry filter having a large transmission probability
for �1 states only. With respect to these states Fe or Co
is half-metallic, having �1 states only in the majority spin
channel. Therefore, one can expect also a high spin-Seebeck
effect in MgO-based tunnel junctions. A disadvantage of Fe
or Co leads is that they are only half-metallic with respect
to specific states. This means that the spin diffusion length is
rather small in comparison to real half-metals.

Our method for the transport calculations is based on the
Green’s function formalism implemented in the Korringa-
Kohn-Rostoker method.10 In this method noncollinear align-
ment of the magnetic layers can be considered to calculate
the transport properties at an arbitrary relative angle between
the magnetizations of the leads. The potentials are calculated
self-consistently within a supercell approach for the parallel
alignment of the magnetic moments of the magnetic layers.
Due to the relatively thick MgO barrier of 6 monolayers, both
magnetic layers are decoupled. Therefore, the other magnetic
orientations are obtained by rotating the potentials of the
parallel alignment without an additional self-consistent cycle.
For the calculation of the energy-dependent transmission
probability semi-infinite leads are considered by self-energies.
For both calculations the atomic sphere approximation is
used and the cutoff for the angular momentum is 3. The
energy-dependent transmission probability T (E) is used to
calculate the moments:

Ln = 2

h

∫
T (E)(E − μ)n[−∂Ef (E,μ,T )]dE, (4)

where f (E,μ,T ) is the Fermi occupation function at a given
energy E, electrochemical potential μ, and temperature T . The
conductance G and the Seebeck coefficient S are given by11

G = e2L0, S = − 1

eT

L1

L0
. (5)

For a better convergence with respect to the energy mesh
we apply a very small bias voltage of 1 meV to avoid
sharp resonances in T (E). By using spin-dependent trans-
mission probabilities T ↑(E) and T ↓(E), the spin-dependent
Seebeck coefficients S↑ and S↓ are calculated. Eventually
we use these spin-dependent Seebeck coefficients to obtain
the spin-Seebeck coefficient using Eq. (2). By using T (E) =
T ↑(E) + T ↓(E) we calculate the charge-Seebeck coefficient.
The temperature dependence is included in the occupation
function only.

First we calculate the Seebeck coefficient for pure Fe and
Co, where Co has the same bcc structure as Fe. Figure 1
shows the calculated results as a function of temperature.
Experimental values are in the μV/K range for pure Fe12

and for an NiFe alloy,7 which means that our results have
the correct order of magnitude. However, the details of the
temperature dependence of the Seebeck coefficient in pure Fe12

is quite different than ours. The origins of these discrepancies
are the unknown quality of the samples and, in particular for
high temperatures, the missing inelastic contribution within
the theory. To stress this point, we are only investigating the
temperature dependence due to changes in the occupation
function. Nevertheless, our method is suitable to calculate
the Seebeck and consequently the (ideal) spin-Seebeck co-
efficients to the right order of magnitude.
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FIG. 1. (Color online) Seebeck coefficient as a function of
temperature for pure Fe (black, solid line) and Co (red, dashed line).

Next we investigate the MTEP in the tunnel junctions as
a function of the relative magnetization of both magnetic
layers to each other. For this purpose, we look at symmetric
tunnel junctions with Fe and Co leads, where Co has again the
same structure as Fe. The magnetic layers are 20 monolayers,
MgO has 6 monolayers, and the junction is connected to
reservoirs represented by Cu in a bcc-Fe structure. The
positions of the atoms are ideal to get only the influence
of the magnetic material and not of different relaxations in
addition. It is well known that the interface structure and,
therefore, also the relaxation at the interface can influence the
transport characteristics. Therefore, we plan to investigate the
influence of different interfaces on the spin-Seebeck coefficient
and MTEP in the future. Figure 2 (upper panel) shows the
Seebeck coefficient as a function of the relative angle of
the magnetization for a temperature of 300 K. The angular
dependence shows an almost constant Seebeck coefficient up
to about 120◦. There is a drastic change at angles close to
the antiparallel alignment. Figure 2 (middle panel) shows the
temperature dependence of the MTEP ratio for antiparallel
alignment. There is a huge MTEP effect that can be much larger
than for all-metallic junctions, which show an experimental
value of about 30%.4 However, the temperature dependence
is nontrivial and includes divergence at certain temperatures
and a change of sign. In addition, there is a large difference
between the two magnetic materials.

Note that the Seebeck coefficient can also be negative.
Therefore, it is not obvious which magnetic alignment causes
the divergences of the MTEP ratio for the Fe/MgO/Fe
junctions. Consequently, we show in Fig. 2 (lower panel) the
temperature dependence of the Seebeck coefficient for parallel
and antiparallel alignments. This viewgraph shows that the
first two divergences for a negative MTEP ratio are caused
by a vanishing Seebeck coefficient for antiparallel alignment.
In contrast, the divergence at high temperature is due to a
vanishing Seebeck coefficient in the parallel alignment.

For magnetic tunnel junctions the calculation of transport
parameters can be rather tedious due to the rich structure of
T (E) around the Fermi level. Even for one particular energy
for T (E) the k-point mesh for the integration within the
first Brillouin zone has to be very dense; typically tens of
thousands.13 Consequently, convergence studies with respect
to the number of k points and the number of energy points
have to be carried out. The latter is important, in particular,
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FIG. 2. (Color online) Upper panel shows the Seebeck coefficient
of Fe/MgO/Fe as a function of the relative angle between the two
magnetizations of the magnetic layers for different temperatures:
100 K (black), 200 K (red), and 300 K (blue). Middle panel shows
the MTEP ratio of Fe/MgO/Fe (black, solid line) and Co/MgO/Co
(red, dashed line) as a function of temperature. Lower panel shows
the Seebeck coefficient of Fe/MgO/Fe as a function of temperature
for parallel (black, solid line) and for antiparallel (blue, dashed line)
alignment of the magnetizations.

for small temperatures. For this purpose Fig. 3 shows the
MTEP of Fe/MgO/Fe for different k-point and energy meshes.
The qualitative behavior of MTEP is basically independent
of the number of k points. The only slight change is in the
position where the second divergence of the MTEP occurs.
The influence of the different energy meshes on the MTEP is
similar. The main differences are at very small temperatures
and the position of the third divergence of the MTEP. In
both cases the position of the divergences changes due to the
relatively small slope of the Seebeck coefficients. A small
change in the Seebeck coefficient shifts the point where the
Seebeck coefficient vanishes and, therefore, the position of the
divergence. Nevertheless, the qualitative behavior is nearly
unchanged. For Figs. 2, 4, and 5 we actually use the larger
k-point mesh with 160 000 k points and the dense energy
mesh with a distance between energy points of 0.68 meV.

In Fig. 4 we present the spin-Seebeck coefficients for
Fe/MgO/Fe and Co/MgO/Co as a function of temperature.
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FIG. 3. (Color online) Upper panel shows the MTEP ratio of
Fe/MgO/Fe for different k-point meshes: 100 × 100 (10 000) k

points (red, dashed line), 200 × 200 (40 000) k points (blue, dashed
line), and 400 × 400 (160 000) k points (black, solid line). The
energy mesh for all cases has a distance of 0.68 meV between the
energy points. Lower panel shows the MTEP ratio of Fe/MgO/Fe
for different energy meshes with a distance of 13.6 meV (red, dashed
line), 3.4 meV (blue, dashed line), and 0.68 meV (black, solid line)
between the energy points. In all cases we use a k-point mesh of
400 × 400 (160 000) k points.

The absolute values are comparable to the classical Seebeck
coefficients. However, note that these values are not robust
and can be seen only as an upper limit. The temperature
dependence for Fe/MgO/Fe is quite complicated with sign
change of the slope with temperature.

The temperature dependencies of the MTEP and of the
spin-Seebeck coefficient can be understood by looking at the
energy-dependent transmission probability. The features of
these transmission probabilities, in turn, can be understood by
looking at the electronic structure at the interface between the
magnetic material and the barrier.14 We will not further discuss
the electronic states but we will discuss in Fig. 5 how T (E)
can explain the temperature dependence seen in Figs. 2 and 4.

For this purpose we show in Fig. 5 the spin-dependent
Seebeck coefficients and transmission probabilities for
Fe/MgO/Fe. First, we start our discussion with the majority
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FIG. 4. (Color online) Spin-dependent Seebeck coefficient of
Fe/MgO/Fe (black, solid line) and Co/MgO/Co (red, dashed line)
as a function of temperature.
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FIG. 5. (Color online) Top: Seebeck coefficient of Fe/MgO/Fe
for the majority (left) and minority (right) spin. Middle: Transmission
probabilities as a function of energy for majority (left) and minority
(right) spin. Bottom: the integrand T (E)∂Ef (E,μ,T ) from Eq. (4)
as a function of energy for majority (left) and minority (right) spin at
different temperatures. The dot shows the center of mass.

spin. In this case T ↑(E) is a smooth function showing two
peaks: one above and one below the Fermi level. The positions

of the peaks are asymmetric to the Fermi level. Equation (4)
shows that the Seebeck coefficient is basically the center of
the mass of T (E)∂Ef (E,μ,T ) divided by temperature. The
contributing states within the integral are centered around
the Fermi level and the width is increasing with increasing
temperature. Consequently, starting from 0 K the peak in the
transmission above the Fermi level contributes to the Seebeck
coefficient shifting the center of mass to higher energies, which
leads to the increase of the Seebeck coefficient. This is shown
in the lower panel of Fig. 5. When the temperature is large
enough that the peak below the Fermi level contributes to
the Seebeck coefficient, then the Seebeck coefficient starts to
decrease. For very high temperatures, both peaks contribute
equally to the Seebeck coefficient leading to a center of mass
close to the Fermi level and a vanishing Seebeck coefficient.
In a similar way, the dependence of the Seebeck coefficient
for the minority spin can be understood although T ↓(E) has a
more complicated structure.

In summary, we calculated the spin-Seebeck coefficient
and the magneto-thermoelectric power for MgO-based tunnel
junctions with Fe and Co leads. Spin-Seebeck values of up to
150 μV/K are possible, which is similar to the value of the
normal charge-Seebeck coefficient. The calculated values can
be seen as an upper limit of what is possible in experiments.
Due to spin diffusion, the spin voltage will be strongly reduced
with distance from the barrier. Nevertheless, our calculation
shows what is the maximum possible difference in spin
chemical potentials next to the barrier. Besides the absolute
values, we predict a nontrivial temperature dependence of the
spin-Seebeck coefficient that changes drastically by going to
other magnetic material. In particular, for Fe/MgO/Fe the
sign of the slope of the Seebeck coefficient changes with
temperature whereas for Co/MgO/Co the sign of the slope
is the same for all temperatures. This means that different
materials have different optimal working temperatures. The
MTEP ratio can be several 1000% in tunnel junctions. In
particular, the nontrivial temperature dependence shows even
a divergence at certain temperatures. Consequently, in future
work not only the material has to be analyzed in detail but also
the temperature dependence.
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